Advertisement

Plant Molecular Biology

, Volume 50, Issue 4–5, pp 789–802 | Cite as

Expansins in the bryophyte Physcomitrella patens

  • Ori Schipper
  • Didier Schaefer
  • Ralf Reski
  • Andrew Fleming
Article

Abstract

Expansins are cell wall proteins which play a key function in basic processes of plant growth and differentiation. It has been proposed that expansins are likely to be present in all land plants and, to date, they have been reported in angiosperms, gymnosperms and pteridophytes. In this paper, we provide the first report and analysis of genes encoding expansin-like proteins in the bryophyte, Physcomitrella patens. Our analysis indicates that both α- and β-expansins are present as gene families in this plant and expression analysis indicates that these genes are subject to a complex regulation by both hormonal and environmental factors. In particular, the expression of many expansin genes in P. patens is upregulated by stress conditions, suggesting that they play a role in the specific cellular differentiation displayed by P. patens in response to such stress. Finally, we provide the first report on the generation and analysis of a series of knockout mutants for individual expansin genes. Abbreviations: IAA, indole-acetic acid; BAP, 6-benzylaminopurine; ABA, abscisic acid; npt, neomycin phospotransferase; KO, knockout

abiotic stress auxin expansin gene targeting Physcomitrella patens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic Local Alignment Search Tool. J. Mol. Biol. 215: 403–410.Google Scholar
  2. Ashton, N. W. and Cove, D. J. 1977. The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants in the moss Physcomitrella patens. Mol. Gen. Genet. 154: 87–95.Google Scholar
  3. Ashton, N. W., Grimsley, N. H. and Cove, D. 1979. Analysis of gametophytic developoment in the moss Physcomitrella patens using auxin and cytokinin resistant mutants. Planta 144: 427–435.Google Scholar
  4. Bonnema, A. B., Peytavi, R., van Daelen, R. A. J., Zabel, P. and Grimsley, N. 1993. Development of an in vivo complemention system for identification of plant genes using yeast artificial chromosomes (YACS). In: Bacterial Wilt. (ACIAR proceedings) Eds. Hartmann, G. L and Hayward, A. C.Google Scholar
  5. Bouché, N. and Bouchez, D. 2001. Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4: 111–117.Google Scholar
  6. Caderas, D., Muster, M., Vogler, H., Mandel, T., Rose, J.K.C., McQueen-Mason, S. and Kuhlemeier, C. 2000. Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol. 123: 1399–1413.Google Scholar
  7. Cho, H-T. and Cosgrove, D. J. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 9783–9788.Google Scholar
  8. Cho, H-T. and Kende, H. 1997. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9: 1661–1671.Google Scholar
  9. Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407: 321–326.Google Scholar
  10. Cove, D. J., Knight, C. D. and Lamparter, T. 1997. Mosses as model systems. Trends Plant Sci. 2: 99–105.Google Scholar
  11. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.Google Scholar
  12. Fleming, A. J., McQueen-Mason, S., Mandel, T. and Kuhlemeier, C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415–1418.Google Scholar
  13. Goode, J. A., Stead, A. D. and Duckett, J. G. 1993. Redifferentiation of moss protonemata: an experimental and immunofluorescence study of brood cell formation. Can. J. Bot. 71: 1510–1519.Google Scholar
  14. Herrin, D. L. and Schmidt, G.W. 1988. Rapid, reversible staining of northern blots prior to hybridization. Biotechniques 6: 196–200.Google Scholar
  15. Hutchison, K. W., Singer, P. B., Diaz-Sala, C. and Greenwood, M. S. 1999. Expansins are conserved in conifers and expressed in response to exogenous auxin. Plant Physiol. 120, 827–832.Google Scholar
  16. Kim, J. H., Cho, H.-T. and Kende, H. 2000. ?-expansins in the semi-aquatic ferns Marsilea quadrifolia and Regnellidium diphyllum: evolutionary aspects and physiological role in rachis elongation. Planta 212: 85–92.Google Scholar
  17. Knight, C. D., Sehgal, A., Atwal, K., Wallace, J. C., Cove, D. J., Coates, D., Quatrano, R. S., Bahadur, S., Stockley, P. G. and Cuming, A. C. (1995) Molecular response to abscisic acid and stress conserved between mosses and cereal. Plant Cell 7: 499–506.Google Scholar
  18. Lee, Y., Choi, D. and Kende, H. 2001. Expansins: ever-expanding numbers and functions. Curr. Opin. Plant Biol. 4: 527–532.Google Scholar
  19. Li, Y., Darley, C. P., Ongaro, V., Fleming, A., Schipper, O., Baldauf, S. L. and McQueen-Mason, S. J. 2002. Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol. 128, 854–864.Google Scholar
  20. McQueen-Mason, S., Durachko, D. M. and Cosgrove, D. J. 1992. Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4: 1425–1433.Google Scholar
  21. Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot. Engineer. 10: 1–6.Google Scholar
  22. Oliver, M. J. 1991. Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis. Plant Physiol. 97: 1501–1511.Google Scholar
  23. Perrière, G. and Gouy, M. 1996. WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 78: 364–369.Google Scholar
  24. Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C. and Fleming, A.J. 2001. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci. USA 98: 11812–11817.Google Scholar
  25. Reidy, B., McQueen-Mason, S., Nosberger, J. and Fleming, A. J. 2001. Differential expression of alpha and beta expansin genes in the elongating leaf of Festuca pratensis. Plant Mol. Biol. 46: 491–504.Google Scholar
  26. Rose, J. K., Lee, H. H. and Bennett, A. B. 1997. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl. Acad. Sci. USA 94: 5955–5960.Google Scholar
  27. Sambrook, J., Fritsch, E. F. & Maniatis, T. 1992. Molecular Cloning: a laboratory manual. (Cold Spring Harbor, New York).Google Scholar
  28. Schaefer, D. 2001. Gene targeting in Physcomitrella patens. Curr. Opin. Plant Biol. 4: 143–150.Google Scholar
  29. Schaefer, D. and Zrÿd, J.-P. 1997. Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11: 1195–1206.Google Scholar
  30. Shcherban, T. Y., Shi, J., Durachko, D. M., Guiltinan, M. J., McQueen-Mason, S. J., Shieh, M., and Cosgrove, D. J. 1995. Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc. Natl. Acad. Sci. USA 92: 9245–9249.Google Scholar
  31. Strepp, R., Scholz, S., Kruse, S., Speth, V. and Reski, R. 1998. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl. Acd. Sci. USA 95: 4368–4373.Google Scholar
  32. Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.Google Scholar
  33. Yu, W., Meeley, R. B. and Cosgrove, D. J. 2001. Analysis and expression of the ?-expansin and ?-expansin gene families in maize. Plant Physiol. 126: 222–232.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Ori Schipper
    • 1
  • Didier Schaefer
    • 2
  • Ralf Reski
    • 3
  • Andrew Fleming
    • 1
  1. 1.Institute of Plant Sciences, Swiss Federal Institute of TechnologyUniversitätsstrasse 2ZurichSwitzerland
  2. 2.Institute of EcologyUniversity of LausanneLausanneSwitzerland
  3. 3.Plant BiotechnologyAlbert-Ludwigs UniversityFreiburgGermany

Personalised recommendations