Plant Cell, Tissue and Organ Culture

, Volume 71, Issue 2, pp 157–164 | Cite as

The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants

  • J. Imani
  • A. Berting
  • S. Nitsche
  • S. Schaefer
  • W. H. Gerlich
  • K.-H. Neumann
Article

Abstract

The percentage of cells successfully transformed by Agrobacteria is usually very low (not more than 10% and usually much less; Thomas et al., 1989). In this report we show that in carrot (Daucus carota L., ssp. sativus) cell suspensions transformation efficiency was strongly improved by using cell cycle synchronized cells. Fluorodesoxyuridine (FDU) was added for 24 h to inhibit thymidine synthesis. This blocked the cell cycle at the transition from G1- to S-phase. Then the block was released by applying thymidine. A high rate of transformation was obtained when Agrobacterium tumefaciens was added concurrently with thymidine. As examples of efficient and long term foreign gene expression in transgenic cells, the reporter enzyme β-glucuronidase (GUS) as a model as well as the major hepatitis B virus surface protein were used. Both genes were linked to the MAS promoter. In carrot cell suspensions containing the viral gene, the corresponding viral protein was produced. In roots of mature transgenic carrot plants generated through somatic embryogenesis and raised in soil as well as in callus cultures derived thereof, the viral protein was also produced.

cell cycle synchronization Daucus FDU/Thymidine hepatitis B transformation efficiency transgenic strains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaschke JR (1977) Histologische, cytochemische und biochemische Untersuchungen zur Charakterisierung des Kinetineinflusses auf die Entwicklung haploider und diploider Kalluskulturen von Datura innoxia Mill. Ph.D. Thesis. Justus Liebig University, Giessen, GermanyGoogle Scholar
  2. Blaschke JR, Forche E & Neumann KH (1978) Investigations on the cell cycle of haploid and diploid tissue cultures of Datura innoxia Mill. and its synchronisation. Planta 144: 7–12Google Scholar
  3. Chen HL, Chang MH, Ni NY, Lee PI, Lee CY & Chen DS (1996) Seroepidemiology of hepatitis-B virus infection in children: ten years of mass vaccination in Taiwan. JAMA 276: 906–908Google Scholar
  4. Chen DS, Chen HMH, Sung JL, Hsu ST, Kuo YT, Lo KJ & Shih YT (1988) The Hepatitis Steering Committee, and the Hepatitis Control Committee. Control of hepatitis B virus infection in a hyperendemic area: A mass immunoprophylaxis programme in Taiwan. Viral hepatitis and liver diseases. New York A.R. Liss: 971–976Google Scholar
  5. Ehsani P, Khabiri A & Domansky NN (1997) Polypeptides of hepatitis B surface antigen produced in transgenic potato. Gene 190: 107–111Google Scholar
  6. Froese C & Neumann KH (1997) The influence of kinetin on the protein synthesis pattern at some stages of the cell cycle of regenerative synchronized cell suspension cultures of Daucus carota L. Angew. Bot. 71: 11–115Google Scholar
  7. Gamborg OL, Miller RA & Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cultures. Exp. Cell Res. 50: 151–158Google Scholar
  8. Imani J (1999) In situ-Nachweis der Auxinverteilung in kultivierten Petiolen explantaten von transgenen Pflanzen während der Induktion der somatischen Embryogenese bei Daucus carota L. Ph.D. Thesis Justus Liebig University, Giessen, GermanyGoogle Scholar
  9. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405Google Scholar
  10. Jefferson RA, Kavanagh TA & Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907Google Scholar
  11. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A & Legocki AB (1999) A plant derived edible vaccine against hepatitis B virus. FASEB J 13: 1796–1799Google Scholar
  12. Langridge WHR, Fitzgerald KJ, Koncz C, Schell J & Szalay A (1989) Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc. Natl. Acad. Sci. 80: 3214–3223Google Scholar
  13. Li T & Neumann KH (1985) Embryogenesis and endogenous hormone content of cell cultures of some carrot varieties (Daucus carota L.) Ber. Deutsch. Bot. Ges. 98: 227–235Google Scholar
  14. Mason HS, Lam DMK & Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc. Nat. Ac. Sci. USA 89: 11745–11749Google Scholar
  15. Mason HS, Ball JM, Shi JJ, Jiang X, Estes MK & Arntzen CJ (1996) Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Nat. Ac. Sci. USA 93: 5335–5340Google Scholar
  16. Maynard JE, Kane MA, Alter JM & Halder CH (1986) In: Control of hepatitis B by immunization: global perspectives. Viral hepatitis and liver disease. New York A.R. Liss: 967–969Google Scholar
  17. Neumann KH (1966) Wurzelbildung und Nukleinsäuregehalt bei Phloem-Gewebekulturen der Karottenwurzel auf synthetischem Nährmedium. Congr. Coll. Univ. Liege 38: 96–102Google Scholar
  18. Neumann KH (1995) Pflanzliche Zell-und Gewebekulturen. Ulmer, Stuttgart, GermanyGoogle Scholar
  19. Report of a WHO meeting (1993) Prevention of liver cancer, Technical report no. 691. World Health Organization. Geneva 8–9Google Scholar
  20. Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory Press. Cold Spring HarborGoogle Scholar
  21. Steward FC. Mapes MO & Mears K (1952) Investigation on growth and metabolism of plant cells. I. New techniques for the invest-igation of metabolism, nutrition and growth in undifferentiated cells. Am. J. Bot. 16: 57–77.Google Scholar
  22. Thomas JC, Guiltinan MJ, Bustos S, Thomas T & Nassler C (1989) Carrot (Daucus carota) hypocotyl transformation using Agrobacterium tumefaciens. Plant Cell Rep. 8: 354–357Google Scholar
  23. Tsuda S, Yoshioka K, Tanaka T, Iwata A, Yoshikawa A, Watanabe Y & Okada Y (1998) Application of the human hepatitis B virus core antigen from transgenic tobacco plants for serological diagnosis. Vox Sang 74: 148–155Google Scholar
  24. Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L & Rocha-Sosa M (1990) Construction of an introncontaining marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250Google Scholar
  25. Velten J, Velten L, Hain R & Schell J (1984) Isolation of dual plant promoter fragment from Ti plasmid of Agrobacterium tumefaciens. EMBO J. 12: 2723–2730Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • J. Imani
    • 1
  • A. Berting
    • 2
    • 3
  • S. Nitsche
    • 2
    • 4
  • S. Schaefer
    • 2
    • 5
  • W. H. Gerlich
    • 2
  • K.-H. Neumann
    • 1
  1. 1.Institut für Pflanzenernährung, Abt. GewebekulturJustus-Liebig UniversitätGiessenGermany
  2. 2.Institut für Medizinische VirologieJustus-Liebig UniversitätGiessenGermany
  3. 3.Max Planck Institut für BiochemieMartinsriedGermany
  4. 4.FriedrichsdorfGermany
  5. 5.Institut für Medizinische Mikrobiologie, Virologie u. HygieneUniversität RostockGermany

Personalised recommendations