Advertisement

International Journal of Computer Vision

, Volume 49, Issue 1, pp 23–37 | Cite as

Epipolar Geometry for Central Catadioptric Cameras

  • Tomáš Svoboda
  • Tomáš Pajdla
Article

Abstract

Central catadioptric cameras are cameras which combine lenses and mirrors to capture a very wide field of view with a central projection. In this paper we extend the classical epipolar geometry of perspective cameras to all central catadioptric cameras. Epipolar geometry is formulated as the geometry of corresponding rays in a three-dimensional space. Using the model of image formation of central catadioptric cameras, the constraint on corresponding image points is then derived. It is shown that the corresponding points lie on epipolar conics. In addition, the shape of the conics for all types of central catadioptric cameras is classified. Finally, the theory is verified by experiments with real central catadioptric cameras.

epipolar geometry panoramic vision omnidirectional vision catadioptric camera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S. and Nayar, S.K. 1999. A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision, 35(2):1–22.Google Scholar
  2. Brodsky, T., Fermueller, C., and Aloimonos, Y. 1998. Directions of motion fields are hardly ever ambiguous. International Journal of Computer Vision, 26(1):5–24.Google Scholar
  3. Buriánek, J. 1998. Korespondence pro virtualní kameru. Master' Thesis, Czech Technical University, Center for Machine Perception, Department of Control Engineering, Czech Republic (in Czech).Google Scholar
  4. Chang, P. and Hebert, M. 2000. Omni-directional structure from motion. In IEEE Workshop on Omnidirectional Vision, K. Daniilidis (Ed.). IEEE Computer Society Press: Los Alamitos, CA, pp. 127–133.Google Scholar
  5. Descartes, R. and Smith, D.T. 1954. The Geometry of René Descartes. Dover Publ.: New York. Originally published in Discours de la Methode, 1637.Google Scholar
  6. Faugeras, O. 1993. 3-D Computer Vision, A Geometric Viewpoint. MIT Press: Cambridge, MA.Google Scholar
  7. Geyer, C. and Daniilidis, K. 1999. Catadioptric camera calibration. In The 7th International Conference on Computer Vision, Kerkyra, Greece, vol. I, IEEE Computer Society Press: Los Alamitos, CA, pp. 398–404.Google Scholar
  8. Gluckman, J. and Nayar, S.K. 1998. Ego-motion and omnidirectional cameras. In The Sixth International Conference on Computer Vision, Bombay, India, S. Chandran and U. Desai (Eds.). Narosa Publishing House, pp. 999–1005.Google Scholar
  9. Hartley, R. and Zisserman, A. 2000. Multiple ViewGeometry in Computer Vision. Cambridge University Press: Cambridge, UK.Google Scholar
  10. Hazewinkel, M. (Ed.). 1995. Encyclopaedia of Mathematics. Kluwer Academic Publishers: Dordrecht, MA.Google Scholar
  11. Hecht, E. 1975. Optics, Schaum Outline Series. McGraw-Hill: New York.Google Scholar
  12. Kang, S.B. 2000. Catadioptric self-calibration. In International Conference on Computer Vision and Pattern Recognition, vol. I, IEEE Computer Society Press: Los Alamitos, CA, pp. 201–207.Google Scholar
  13. Nayar, S. and Peri, V. 1999. Folded catadioptric cameras. In Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, vol. II, IEEE Computer Society Press: Los Alamitos, CA, pp. 217–223.Google Scholar
  14. Nene, S.A. and Nayar, S.K. 1998. Stereo with mirrors. In The Sixth International Conference on Computer Vision, Bombay, India, S. Chandran and U. Desai (Eds.). Narosa Publishing House, pp. 1087–1094.Google Scholar
  15. Pajdla, T. 1995. BCRF-Binary Illumination Coded Range Finder: Reimplementation. ESAT MI2 Technical Report Nr. KUL/ESAT/MI2/9502, Katholieke Universiteit Leuven, Belgium.Google Scholar
  16. Pajdla, T., Svoboda, T., and Hlaváč, V. 2001. Epipolar geometry of central panoramic cameras. In Panoramic Vision: Sensors, Theory, and Applications, R. Benosman and S.B. Kang (Eds.). Springer Verlag: New York, pp. 85–114.Google Scholar
  17. Semple, J.G. and Kneebone, G.T. 1998. Algebraic Projective Geometry, 4th edn. Oxford Classic Texts in the Physical Sciences, Clarendon Press: Oxford, USA.Google Scholar
  18. Southwell, D., Basu, A., Fiala, M., and Reyda, J. 1996. Panoramic stereo. In 13th International Conference on Pattern Recognition, Vienna, Austria, vol. A, IEEE Computer Society Press: Los Alamitos, CA, pp. 378–382.Google Scholar
  19. Svoboda, T. 2000. Central panoramic cameras design, geometry, ego-motion. Ph.D. Thesis, Center for Machine Perception, Czech Technical University, Prague, Czech Republic.Google Scholar
  20. Svoboda, T. and Pajdla, T. 2000. Panoramic cameras for 3D computation. In Proceedings of the Czech Pattern Recognition Workshop, Prague, Czech Republic, T. Svoboda (Ed.). Czech Society for Pattern Recognition, pp. 63–70. Also available at http: / /cmp.felk.cvut.cz/"svoboda / Publications /svobCPRW2000.html.Google Scholar
  21. Svoboda, T., Pajdla, T., and Hlaváč, V. 1998a. Epipolar geometry for panoramic cameras. In The Fifth European Conference on Computer Vision, Freiburg, Germany, H. Burkhardt and N. Bernd (Eds.). Springer: Berlin, pp. 218–232.Google Scholar
  22. Svoboda, T., Pajdla, T., and Hlaváč, V. 1998b. Motion estimation using central panoramic cameras. In IEEE International Conference on Intelligent Vehicles, Stuttgart, Germany, S. Hahn (Ed.). Causal Productions, pp. 335–340.Google Scholar
  23. Van Huffel, S. and Vandewalle, J. 1991. The Total Least Squares Problem: Computational Aspects and Analysis, vol.9 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics: Philadelphia.Google Scholar
  24. Yagi, Y. 1999. Omnidirectional sensing and its applications. IE-ICE Transactions on Information and Systems, E82-D(3):568–579.Google Scholar
  25. Yamazawa, K., Yagi, Y., and Yachida, M. 1995. Obstacle detection with omnidirectional image sensor hyperomni vision. In IEEE International Conference on Robotics and Automation 1995, pp. 1062–1067.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Tomáš Svoboda
    • 1
  • Tomáš Pajdla
    • 1
  1. 1.Center for Machine Perception, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical UniversityPragueCzech Republic

Personalised recommendations