International Journal of Thermophysics

, Volume 23, Issue 5, pp 1185–1195 | Cite as

High-Temperature Properties of Liquid Boron from Contactless Techniques

  • F. Millot
  • J. C. Rifflet
  • V. Sarou-Kanian
  • G. Wille


The density, surface tension, and spectral and total hemispherical emissivities of liquid boron obtained with contactless diagnostics are reported for temperatures between 2360 and 3100 K. It is shown that, contrary to previous expectations, liquid boron is denser than the solid at its melting point. It is also shown that the high total emissivity of 0.36 is not consistent with that of a liquid metal as recently claimed. Finally, good agreement is found with previously reported surface tensions and spectral emissivities of liquid boron.

density emissivity high temperature levitation liquid boron surface tension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Krishnan, S. Ansell, J. J. Felten, K. J. Volin, and D. L. Price, Phys. Rev. Lett. 81:586 (1998).Google Scholar
  2. 2.
    N. Vast, S. Bernard, and G. Zerah, Phys. Rev. B 52:4123 (1995).Google Scholar
  3. 3.
    S. H. Tsagareishvili and G. V. Tsagareishvili, J. Less Common Metals 67:541 (1979).Google Scholar
  4. 4.
    B. Glorieux, F. Millot, J. C. Rifflet, and J. P. Coutures, Int. J. Thermophys. 20:1085 (1999).Google Scholar
  5. 5.
    F. Millot, J. C. Rifflet, G. Wille, V. Sarou-Kanian, and B. Glorieux, J. Amer. Ceram. Soc. 85:187 (2002).Google Scholar
  6. 6.
    F. Millot, B. Glorieux, and J. C. Rifflet, Prog. Astronautics and Aeronautics 185:777 (1999).Google Scholar
  7. 7.
    S. Krishnan, P. Nordine, K. K. R. Weber, and R. A. Schiffman, High Temp. Sci. 31:45 (1992).Google Scholar
  8. 8.
    F. N. Tavadze, I. A. Bairamashvili, D. V. Khantadze, and G. V. Tsagareishvili, Dokl. Akad. Nauk. SSSR 150:544 (1963).Google Scholar
  9. 9.
    Y. S. Touloukian and D. P. DeWitt, Thermophysical Properties of Matter, The TPRC Data Series (Plenum, New-York, 1970).Google Scholar
  10. 10.
    M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. MacDonald, and A. N. Syverud, JANAF thermochemical tables, 3rd Ed., J. Phys Chem. Ref. Data 14:177 (1985).Google Scholar
  11. 11.
    W. K. Rhim, S. K. Chung, A. J. Rulison, and R. E. Spjut, Int. J. Thermophys. 18:459 (1997).Google Scholar
  12. 12.
    W. K. Rhim and K. Ohsaka, J. Crystal Growth 208:313 (2000).Google Scholar
  13. 13.
    W. K. Rhim and T. Ishikawa, Int. J. Thermophys. 21:429 (2000).Google Scholar
  14. 14.
    M. Przyborowski, T. Hibiya, M. Eguchi, and I. Egry, J. Cryst. Growth 151:60 (1995).Google Scholar
  15. 15.
    T. Hibiya and S. Nakamura, Int. J. Thermophys. 17:1191 (1996).Google Scholar
  16. 16.
    B. Glorieux, M. L. Saboungi, and J. E. Enderby, Europhys. Lett. 56:81 (2001).Google Scholar
  17. 17.
    G. V. Tsagareishvili, D. SH. Tsagareishvili, and A. G. Khvedelidze, J. Less Common Met. 75:141 (1980).Google Scholar
  18. 18.
    D. R. Lide, ed., Handbook of Chemistry and Physics, 79th Ed. (CRC Press, Boca Raton, Florida, 1998).Google Scholar
  19. 19.
    T. Malot, R. Fabbro, D. Grevey, P. Peyre, L. Sabatier, and S. Henry, Laser Material Processing (Laser Institute of America, ed.) 89:D210–D219 (2000).Google Scholar
  20. 20.
    A. Tegetmeier, A. Cröll, and K. W. Benz, J. Cryst. Growth 141:451 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • F. Millot
    • 1
  • J. C. Rifflet
    • 1
  • V. Sarou-Kanian
    • 1
  • G. Wille
    • 1
  1. 1.CRMHT/CNRSOrléans Cedex 2France

Personalised recommendations