Advertisement

Quantum Information Processing

, Volume 1, Issue 3, pp 207–224 | Cite as

On the Generation of Sequential Unitary Gates from Continuous Time Schrödinger Equations Driven by External Fields

  • Claudio Altafini
Article

Abstract

In most of the proposals for quantum computers, a common feature is that the quantum circuits are expected to be made of cascades of unitary transformations acting on the quantum states. Such unitary gates are normally assumed to belong to a given discrete set of transformations. However, arbitrary superposition of quantum states may be achieved by utilizing a fixed number of transformations, each depending on a parameter. A framework is proposed to dynamically express these parameters directly in terms of the control inputs entering into the continuous time forced Schrouml;dinger equation.

PACS: 03.67.Lx; 03.65.Fd; 02.30.Mv; 02.30.Xy

quantum control quantum circuits driven Schrödinger equation Wei-Norman formula product of exponentials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C. Altafini, J.Math. Phys. 43(5), 2051-2062 (2002).Google Scholar
  2. 2.
    C. Altafini, ''Parameter differentiation and quantum state decomposition for time varying Schrödinger equations.'' Preprint arXiv:quant-ph/0201034, 2002.Google Scholar
  3. 3.
    D. Cory, R. Laflamme, E. Knill, L. Viola, T. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Shart, G. Teklemarian, Y. Weinstein, and Z. Zurek, Prog.Phys. 48, 875 (2000).Google Scholar
  4. 4.
    J. Craig, Introduction to Robotics 2nd ed. (Addison Wesley, Reading, MA, 1989).Google Scholar
  5. 5.
    D. D'Alessandro, ''Uniform finite generation of compact Lie groups and universal quantum gates.'' quant-ph/0111133, 2001.Google Scholar
  6. 6.
    D. Deutsch, A. Barenco, and A. Ekert, Proc. R. Soc. London, A 449, 669-677 (1995).Google Scholar
  7. 7.
    R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Magnetic Resonance in One and Two Dimensions (Oxford Science Publications, 1987).Google Scholar
  8. 8.
    R. Gilmore, Lie groups, Lie algebras, and Some of Their Applications (Wiley, New York, 1974).Google Scholar
  9. 9.
    S. Lloyd, Phys.Rev.Lett. 75, 346-349 (1995).Google Scholar
  10. 10.
    W. Magnus, Comm.Pure and App.Maths. VII, 649-673 (1954).Google Scholar
  11. 11.
    J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Vol. 17, 2nd ed. Texts in Applied Mathematics (Springer Verlag, 1999).Google Scholar
  12. 12.
    M. Mehring, High Resolution NMR in Solids (Springer Verlag, 1976).Google Scholar
  13. 13.
    P. Moan, J. Oteo, and J. Ros, J. Phys. A 32, 5133-5139 (1999).Google Scholar
  14. 14.
    F. Murnaghan, The Unitary and Rotation Groups (Spartan, Washington, DC, 1962).Google Scholar
  15. 15.
    K. Nemoto, Generalized coherent states for SU(n) systems. J. Phys. A: Mathematics and General, 33 3493-3505 (2000).Google Scholar
  16. 16.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).Google Scholar
  17. 17.
    A. M. Perelomov, Generalized Coherent States and Their Applications Texts and monographs in Physics (Springer Verlag, 1986).Google Scholar
  18. 18.
    V. Ramakrishna, K. L. Flores, H. Rabitz, and R. Ober, Phys. Rev. A 62(5), 3409 (2000).Google Scholar
  19. 19.
    M. Reck, A. Zeilinger, H. Bernstein, and P. Bertani, Phys. Rev. Lett. 73(1), 58-61 (1994).Google Scholar
  20. 20.
    S. G. Schirmer, In Proc.40th Conference on Decision and Control, Orlando, Florida (2001).Google Scholar
  21. 21.
    S. G. Schirmer, A. D. Greentree, V. Ramakrishna, and H. Rabitz, ''Quantum control using sequences of simple control pulses.'' Preprint quant-ph/0105155, 2001.Google Scholar
  22. 22.
    R. H. V. Ramakrishna, Phys. Rev. A 54, 1715-1716 (1996).Google Scholar
  23. 23.
    V. S. Varadarajan, Lie groups, Lie algebras and Their Representations (Springer Verlag, 1984).Google Scholar
  24. 24.
    N. Weaver, J. Math. Phys. 41(1/5), 240-243 and 3300 (2000).Google Scholar
  25. 25.
    J. Wei, J. Math. Phys. 4, 1337-1341 (1963).Google Scholar
  26. 26.
    J. Wei and E. Norman, Proc.of the Amer.Math. Soc. 15, 327-334 (1964).Google Scholar
  27. 27.
    W. Zhang, D. Feng, and R. Gilmore, Rev. of Modern Physics 62, 867-927 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Claudio Altafini
    • 1
  1. 1.SISSA-ISASInternational School for Advanced StudiesTriesteItaly

Personalised recommendations