Photosynthesis Research

, Volume 72, Issue 3, pp 307–319 | Cite as

Photosystem I from the unusual cyanobacterium Gloeobacter violaceus

  • D. Mangels
  • J. Kruip
  • S. Berry
  • M. Rögner
  • E.J. Boekema
  • F. Koenig
Article

Abstract

Photosystem I (PS I) from the primitive cyanobacterium Gloeobacter violaceus has been purified and characterised. Despite the fact that the isolated complexes have the same subunit composition as complexes from other cyanobacteria, the amplitude of flash-induced absorption difference spectra indicates a much bigger antenna size with about 150 chlorophylls per P700 as opposed to the usual 90. Image analysis of the PS I preparation from Gloeobacter reveals that the PS I particles exist both in a trimeric and in a monomeric form and that their size and shape closely resembles other cyanobacterial PS I particles. However, the complexes exhibit a higher molecular weight as could be shown by gel filtration. The preparation contains novel polypeptides not related to known Photosystem I subunits. The N-terminal sequence of one of those polypeptides has been determined and reveals no homology to known or hypothetical proteins. Immunoblotting shows a cross-reaction of three of the polypeptide bands with an antibody raised against the major LHC from the diatom Cyclotella cryptica. Electron microscopy reveals a novel T-shaped complex which has never been observed in any other cyanobacterial PS I preparation. 77 K spectra of purified PS I show an extreme blue-shift of the fluorescence emission, indicating an unusual organisation of the PS I antenna system in Gloeobacter.

antenna system electron microscopy fluorescence light harvesting photosynthesis plasma membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MM (1968) Simple conditions for growth of unicellular bluegreen algae on plates. J Phycol 4: 1-4Google Scholar
  2. Bathke L, Rhiel E, Krumbein WE and Marquardt J (1999) Biochemical and immunochemical investigations on the light-harvesting system of the cryptophyte Rhodomonas sp.: evidence for a Photosystem I specific antenna. Plant Biol 1: 516-523Google Scholar
  3. Bibby TS, Nield J and Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743-745PubMedCrossRefGoogle Scholar
  4. Boekema EJ, Dekker JP, van Heel MG, Rögner M, Saenger W, Witt I and Witt HT (1987) Evidence for a trimeric organization of Photosystem I complexes from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283-286CrossRefGoogle Scholar
  5. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745-748PubMedCrossRefGoogle Scholar
  6. Bryant DA, Cohen-Bazire G and Glazer AN (1981) Characterization of the biliproteins of Gloeobacter violaceus. Arch Microbiol 129: 190-198CrossRefGoogle Scholar
  7. Chitnis PR (1996) Photosystem I. Plant Pysiol 111: 661-669CrossRefGoogle Scholar
  8. Chitnis VP and Chitnis PR (1993) PsaL subunit is required for the formation of Photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336: 330-334PubMedCrossRefGoogle Scholar
  9. Funk C and Vermaas W(1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38: 9397-9404PubMedCrossRefGoogle Scholar
  10. Garczarek L, van der Staay GWM, Thomas JC and Partensky F (1998) Isolation and characterization of Photosystem I from two strains of the oxychlorobacterium Prochlorococcus. Photosynth Res 56: 131-141CrossRefGoogle Scholar
  11. Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan NV, Dekker JP and van Grondelle R (2001) Timeresolved fluorescence emission measurements of Photosystem I particles of various cyanobacteria: a unified compartmental model. Biophysical J 81: 407-424Google Scholar
  12. Green BR (2001) Was 'molecular opportunism' a factor in the evolution of different photosynthetic light-harvesting pigment systems? Proc Natl Acad Sci USA 98: 2119-2121PubMedCrossRefGoogle Scholar
  13. Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685-714PubMedCrossRefGoogle Scholar
  14. Harauz G, Boekema E and van Heel M (1989) Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol 164: 35-49CrossRefGoogle Scholar
  15. Hess WR, Partensky F, van der Staay GWM, Garcia-Fernandez JM, Börner T and Vaulot D (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci USA 93: 11126-11130PubMedCrossRefGoogle Scholar
  16. Hiyama T and Ke B (1972) Difference spectra and excitation coefficients of P700. Biochim Biophys Acta 267: 160-171PubMedCrossRefGoogle Scholar
  17. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909-917PubMedCrossRefGoogle Scholar
  18. Karapetyan NV, Dorra D, Schweitzer G, Bezsmertnaya IN and Holzwarth AR (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric Photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36: 13830-13837PubMedCrossRefGoogle Scholar
  19. Karapetyan NV, Holzwarth AR and Rögner M (1999) The Photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett 460: 395-400PubMedCrossRefGoogle Scholar
  20. Koenig F and Schmidt M (1995) Gloeobacter violaceus-investigation of an unusual photosynthetic apparatus: absence of the long wavelength emission of Photosystem I in 77 K fluorescence spectra. Physiol Plant 94: 621-628CrossRefGoogle Scholar
  21. Koronakis V, Sharff A, Koronakis E and Luisi B (2000) Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405: 914-917PubMedCrossRefGoogle Scholar
  22. Kruip J, Boekema EJ, Bald D, Boonstra AF and Rögner M (1993) Isolation and structural characterization of monomeric and trimeric Photosystem I complexes (P700*FA/FB and P700*FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 268: 23353-23360PubMedGoogle Scholar
  23. Kruip J, Boekema EJ, Bald D and Rögner M (1994) Evidence for the existence of trimeric and monomeric Photosystem I complexes in the thylakoid membranes of cyanobacteria. Photosynth Res 40: 279-286CrossRefGoogle Scholar
  24. Kruip J, Chitnis PR, Lagoutte B, Rögner M and Boekema EJ (1997) Structural organization of the major subunits in cyanobacterial Photosystem I. J Biol Chem 272: 17061-17069PubMedCrossRefGoogle Scholar
  25. Kruip J, Karapetyan NV, Terekhova IV and Rögner M (1999) In vitro oligomerization of a membrane protein complex-liposome based reconstitution of trimeric Photosystem I from isolated monomers. J Biol Chem 274: 18181-18188PubMedCrossRefGoogle Scholar
  26. Lelong C, Boekema EJ, Kruip J, Bottin H, Roegner M and Setif P (1996) Characterization of a redox active cross-linked complex between cyanobacterial Photosystem I and soluble ferredoxin. EMBO J 9: 2160-2168Google Scholar
  27. Marquardt J and Rhiel E (1997) The membrane-intrinsic lightharvesting complex of the red alga Galdieria sulphuraria (formerly Cyanidium caldarium): biochemical and immunochemical characterization. Biochim Biophys Acta 1320: 153-164CrossRefGoogle Scholar
  28. Marquardt J, Schultze A, Rosenkranz V and Wehrmeyer W (1999) Ultrastructure and photosynthetic apparatus of Rhodella violacea (Porphyridiales, Rhodophyta) grown under iron-deficient conditions. Phycologia 38: 418-427CrossRefGoogle Scholar
  29. Matthijs HCP, van der Staay GWM and Mur LR (1994) Prochlorophytes: the 'other' cyanobacteria? In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 49-64. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  30. Montané M-H and Kloppstech K (2000) The family of lightharvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene 258: 1-8PubMedCrossRefGoogle Scholar
  31. Mullineaux CW, Tobin MJ and Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390: 421-424CrossRefGoogle Scholar
  32. Nelissen B, van de Peer Y, Wilmotte A and de Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12: 1166-1173PubMedGoogle Scholar
  33. Park Y-I, Sandström S, Gustafsson P and Öquist G (1999) Expression of the isiA gene is essential for the survival of the cyanobacterium Synechococcus sp. PCC 7942 by protecting Photosystem II from excess light under iron limitation. Mol Microbiol 32: 123-129PubMedCrossRefGoogle Scholar
  34. Rhiel E, Marquardt J, Eppard M, Mörschel E and Krumbein WE (1997) The light-harvesting system of the diatom Cyclotella cryptica. Isolation of the main light harvesting complex and evidence for the existence of minor pigment proteins. Bot Acta 110: 109-117Google Scholar
  35. Riethman HC and Sherman LA (1988) Purification and characterization of an iron stress-induced chlorophyll protein from the cyanobacterium Anacystis nidulans R2. Biochim Biophys Acta 935: 141-151PubMedCrossRefGoogle Scholar
  36. Rippka R, Waterbury J and Cohen-Bazire G (1974). A cyanobacterium which lacks thylakoids. Arch Microbiol 100: 419-436CrossRefGoogle Scholar
  37. Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990) Mono-, di-and trimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity. Biochim Biophys Acta 1015: 415-424CrossRefGoogle Scholar
  38. Schägger H and Jagow G (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379PubMedCrossRefGoogle Scholar
  39. Schubert W-D, Klukas O, Krauß N, Saenger W, Fromme P and Witt HT (1997). Photosystem I of Synechococcus elongatus at a 4 Å resolution: comprehensive structure analysis. J Mol Biol 272: 741-769PubMedCrossRefGoogle Scholar
  40. Selstam E and Campbell D (1996) Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Arch Microbiol 166: 132-135CrossRefGoogle Scholar
  41. Shubin VV, Bezsmertnaya IN and Karapetyan NV (1995) Efficient energy transfer from the long-wavelength antenna chlorophylls to P700 in Photosystem I complexes from Spirulina platensis. J Photochem Photobiol 30: 153-160CrossRefGoogle Scholar
  42. Sonoike K and Katoh S (1988) Effects of sodium dodecyl sulfate and methyl viologen on the differential extinction coefficient of P700-a band shift of chlorophyll a associated with oxidation of P700. Biochim Biophys Acta 935: 61-71CrossRefGoogle Scholar
  43. Sonoike K and Katoh S (1989) Simple estimation of the differential absorption coefficient of P700 in detergent-treated preparations. Biochim Biophys Acta 976: 210-213Google Scholar
  44. Trissl HW (1993) Long-wavelength absorbing antenna pigments and heterogeneous absorption bands concentrate excitons and increase absorption cross section. Photosynth Res 35: 247-263CrossRefGoogle Scholar
  45. van der Staay GWM, Moon-van der Staay SY, Garczarek L and Partensky F (1998) Characterization of the Photosystem I subunits PsaI and PsaL from two strains of the marine oxyphototrophic prokaryote Prochlorococcus. Photosynth Res 57: 183-191CrossRefGoogle Scholar
  46. van Heel M (1989) Classification of very large electron microscopical image data sets. Optik 82: 114-126Google Scholar
  47. van Heel M and Frank J (1981) Use of multivariate statistics in analysing images of biological macromolecules. Ultramicroscopy 6: 187-194PubMedCrossRefGoogle Scholar
  48. Wenk S-O and Kruip J (2000) Novel, rapid purification of the membrane protein Photosystem I by high-performance liquid chromatography on porous materials. J Chromatogr B Biomed Sci Appl 737: 131-142PubMedCrossRefGoogle Scholar
  49. Wolfe GR, Cunningham FX, Durnford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with lightharvesting complexes of different pigmentation. Nature 367: 566-568CrossRefGoogle Scholar
  50. Woolf VM, Wittmershaus BP, Vermaas WFJ and Tran TD (1994) Resolution of low-energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 at 77 and 295 K through fluorescence excitation anisotropy. Photosynth Res 40: 21-34CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • D. Mangels
    • 1
  • J. Kruip
    • 2
  • S. Berry
    • 2
  • M. Rögner
    • 2
  • E.J. Boekema
    • 3
  • F. Koenig
    • 1
  1. 1.Molekulare PflanzenphysiologieUniversität BremenBremenGermany
  2. 2.Biochemie der PflanzenRuhr-Universität BochumBochumGermany
  3. 3.Biofysische ChemieRijksuniversiteit GroningenGroningenThe Netherlands

Personalised recommendations