Journal of Fusion Energy

, Volume 20, Issue 1–2, pp 1–11 | Cite as

A Physics Exploratory Experiment on Plasma Liner Formation

  • Y. C. Francis Thio
  • Charles E. Knapp
  • Ronald C. Kirkpatrick
  • Richard E. Siemon
  • Peter J. Turchi


Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets-driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven (Q ∼ 1). The experiment (PLX) described in this paper serves as Phase 1 of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using 12 plasma guns arranged in a circle, launching plasma jets toward the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg to 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

Magnetized target fusion plasma liner plasma jets plasma acceleration plasma gun 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Siemon, I. R. Lindemuth, and K. F. Schoenberg, “Why Magnetized Target Fusion Offers a Low-Cost Development Path for Fusion Energy,” Comments on Plasma Physics and Controlled Fusion, 18, 363 (1999).Google Scholar
  2. 2.
    R. E. Siemon, P. J. Turchi, D. C. Barnes, J. H. Degnan, P. Parks, D. Ryutov, and Y. C. F. Thio, “Magnetized Target Fusion: Prospects for Low-cost Fusion Energy,” Proceedings of the Joint Conference of the 12th International Toki Conference and the 3rd General Scientific Assembly of Asia Plasma & Fusion Association (Toki, Japan, Dec. 11–14, 2001).Google Scholar
  3. 3.
    I. R. Lindemuth and R. C. Kirkpatrick, “Parameter Space for Magnetized Fuel Targets in Inertial Confinement Fusion,” Nuclear Fusion, 23, 263 (1983).Google Scholar
  4. 4.
    R. C. Kirkpatrick, I. R. Lindemuth, and M. S. Ward, “Magnetized Target Fusion: An Overview,” Fusion Technology 27, 201 (1995).Google Scholar
  5. 5.
    R. W. Moses, R. A. Krakowski, and R. I. Miller, A Conceptual Design of the Fast-Liner Reactor (FLR) for Fusion Power, LASL Report LA-7686-MS (Los Alamos Scientific Laboratory, Los Alamos, NM, USA, 1979).Google Scholar
  6. 6.
    Y. C. F. Thio, E. Panarella, R. C. Kirkpatrick, C. E. Knapp, and F. Wysocki, “Magnetized Target Fusion in a Spheroidal Geometry with Standoff Drivers.” Current Trends in International Fusion Research—Proceedings of the 2nd Symposium, E. Panarella, ed. (NRC Press, National Research Council of Canada, Ottawa, Canada, 1999).Google Scholar
  7. 7.
    F. Ribe, Proceedings Impact Fusion Workshop, Los Alamos, New Mexico. LASL Report LA-8000C. (Los Alamos National Laboratory, NM, USA, 1979).Google Scholar
  8. 8.
    Y. C. Thio, V. DeMarchi, J. Dugan, L. S. Frost, W. Mamrose, et al., Feasibility Study of a Railgun as a Driver for Impact Fusion, Final Report. DOE Report DOE/ER/13048–3, (U. S. Department of Energy, Germantown, MD, USA., 1986).Google Scholar
  9. 9.
    Y. C. F. Thio, B. Freeze, R. C. Kirkpatrick, B. Landrum, H. Gerrish, et al., High-Energy Space Propulsion Based on Magnetized Target Fusion, Paper AIAA 99–2703, presented at the 35th AIAA Joint Propulsion Conference and Exhibit (Los Angeles, CA, 1999).Google Scholar
  10. 10.
    M. Tuszewski, “Field Reversed Configurations,” Nuclear Fusion 28, 2033 (1988).Google Scholar
  11. 11.
    M. R. Brown, C. D. Cothran, M. Landreman, V. S. Lukin, and M. J. Schaffer, “Overview of the SSX-FRC experiment,” Innovative Confinement Concepts Workshop 2002, U.S. Department of Energy Office of Fusion Energy Sciences (U.S. Department of Energy Office of Fusion Energy Sciences, U. Maryland, MD, USA, January 22–24, 2002).Google Scholar
  12. 12.
    M. Yamada, Y. Ono, A. Hayakawa, M. Katsurai, and F. W. Perkins, “Magnetic Reconnection of Plasma Toroids with Cohelicity and Counterhelicity,” Physical Review Letters, 65, 721 (1990).Google Scholar
  13. 13.
    T. J. M. Boyd and J. J. Sanderson, Plasma Dynamics (Thomas Nelson & Sons, London, UK, 1969).Google Scholar
  14. 14.
    R. B. Lazarus and R. D. Richtmyer, Similarity Solutions for Converging Shocks, LASL Report LA-6823-MS (Los Alamos Scientific Laboratory, Los Alamos, NM, USA, 1977).Google Scholar
  15. 15.
    J. H. Degnan, W. L. Baker, M. Cowan, J. D. Graham, J. L. Holmes, et al., “Operation of a Cylindrical Array of Plasma Guns,” Fusion Technology, 35, 354 (1999).Google Scholar
  16. 16.
    R. Kaye, E. C. Cnare, M. Cowan, T. Burgess, and D. M. Woodall, “Neutron Yield Enhancement by Operation of Multiple DPF Guns,” IEEE International Conference on Plasma Science (Sante Fe, NM, May 18, 1981).Google Scholar
  17. 17.
    J. H. Lee, D. R. McFarland, and F. Hohl, “Production of Dense Plasmas in a Hypocycloidal Pinch Apparatus,” The Physics of Fluids, 20, 313 (1977).Google Scholar
  18. 18.
    Y. C. F. Thio, R. C. Kirkpatrick, C. E. Knapp, “Progress in Magnetized Target Fusion Driven by Plasma Liners,” in Current Trends in International Fusion Research. Proceedings of the 4th Symposium, E. Panarella, ed (NRC Press, NRC Canada, Ottawa, Canada, to appear).Google Scholar
  19. 19.
    J. D. Filliben, Electric Thruster Systems. Report CPTR–97–65. (Chemical Propulsion Information Agency, John Hopkins University, Columbia, MD, USA, 1997), p. 168.Google Scholar
  20. 20.
    J. Degnan, et al., “Compact toroid formation, compression, and acceleration,” Physics Fluids B, 5, 2938 (1993).Google Scholar
  21. 21.
    C. W. Hartman and J. H. Hammer, “New type of collective acceleration,” Physics Review Letters, 48, 929 (1982).Google Scholar
  22. 22.
    A. L. Hoffman and J. T. Slough, “Inductive Field-Reversed Configuration Accelerator for Tokamak Fueling,” IEEE Transactions on Plasma Science, 22, (1999).Google Scholar
  23. 23.
    J. T. Slough and A. L. Hoffman, “Acceleration of a Field Reversed Configuration for Central Fueling of ITER,” Sixteenth IAEA Fusion Eneryg Conference (Montreal, Canada, 7–11 October 1996, 1996).Google Scholar
  24. 24.
    I. M. Smith, D. R. Keefer, and N. W. Wright, “Interferometric Investigation of a Cablegun Plasma,” IEEE Transactions on Plasma Science, 28, 2272 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Y. C. Francis Thio
    • 1
  • Charles E. Knapp
    • 2
  • Ronald C. Kirkpatrick
    • 2
  • Richard E. Siemon
    • 2
  • Peter J. Turchi
    • 3
  1. 1.NASA Marshall Space Flight CenterHuntsville
  2. 2.Los Alamos National Laboratory
  3. 3.Air Force Research LaboratoryKirtland

Personalised recommendations