Advertisement

Cellular and Molecular Neurobiology

, Volume 22, Issue 2, pp 153–169 | Cite as

Expression and Allocation of Proteins of the Exo-Endocytotic Machinery in U373 Glioma Cells: Similarities to Long-Term Cultured Astrocytes

  • Walter Volknandt
  • Friederike Küster
  • Alexander Wilhelm
  • Eva Obermüller
  • Arthur Steinmann
  • Lixia Zhang
  • Herbert Zimmermann
Article

Abstract

1. Cultured astrocytes cells release a variety of low and high molecular weight messenger substances and express proteins of the exocytotic pathway including synaptic SNARE proteins. For analyzing the molecular mechanisms of astrocytic messenger release, permanent cell lines with astrocytic properties would provide useful tools.

2. We analyzed the potential of the human malignant astrocytoma-derived cell line U373 MG to express proteins involved in regulated exo- and endocytosis. An immunoblot analysis identified the astrocyte marker glial fibrillary acidic protein, microtubule-associated protein 2, the v-SNAREs VAMP I, VAMP II, and cellubrevin and the t-SN AREs syntaxin I, SNAP-23, and SNAP-25.

3. The cells also express the secretory granule protein secretogranin II. Although secretogranin II immunofluorescence reveals larger fluorescence spots, the majority of the SNARE proteins is associated with smaller organelles. The immunofluorescence is distributed throughout the cytoplasm and accumulates at processes and the growing edges of cells.

4. The organellar association of SNARE proteins was confirmed by heterologous expression of recombinant fusion proteins. Following subcellular fractionation organelles of lower buoyant density carried the majority of VAMP II. Secretogranin II was associated with organelles of high buoyant density containing a small contribution of VAMP II.

5. The results suggest that U373 MG cells have in common a considerable number of properties with long-term cultured astrocytes rather than with cultured oligodendrocytes or neurons. They contain two types of organelles that can be physically separated and may be employed in the differential release of messengers.

astrocyte glioma granule SNARE U373 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Annaert, W. G., Becker, B., Kistner, U., Reth, M., and Jahn, R. (1997). Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31. J. Cell Biol. 139:1397–1410.PubMedGoogle Scholar
  2. Araque, A., Carmignoto,G., and Haydon, P.G. (2001). Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63:795–813.PubMedGoogle Scholar
  3. Araque, A., Li, N. Z., Doyle, R. T., and Haydon, P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20:666–673.PubMedGoogle Scholar
  4. Baranano, D. E., Ferris, C. D., and Snyder, S. H. (2001). Atypical neural messengers. Trends Neurosci. 24:99–106.PubMedGoogle Scholar
  5. Bennett, M. K., Garcia-Arraras, J. E., Elferink, L. A., Peterson, K., Fleming, A. M., Hazuka, C. D., and Scheller, R. H. (1993). The syntaxin family of vesicular transport receptors. Cell 74:863–873.PubMedGoogle Scholar
  6. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B. L., Pozzan, T., and Volterra, A. (1998). Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285.PubMedGoogle Scholar
  7. Bezzi, P., and Volterra, A. (2001). A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11:387–394.PubMedGoogle Scholar
  8. Bigner, D. D., Bigner, S. H., Ponten, J., Westermark, B., Mahaley, M. S., Rouslahti, E., Herschman, H., Eng, L. F., and Wikstrand, C. J. (1982). Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J. Neuropathol. Exp. Neurol. 40:201–229.Google Scholar
  9. Calegari, F., Coco, S., Taverna, E., Bassetti, M., Verderio, C., Corradi,N., Matteoli, M., and Rosa, P. (1999). A regulated secretory pathway in cultured hippocampal astrocytes. J. Biol. Chem. 274:22539–22547.PubMedGoogle Scholar
  10. Chen, Y. A., Scales, S. J., Duvvuri, V., Murthy, M., Patel, S. M., Schulman, H., and Scheller, R. H. (2001). Calcium regulation of exocytosis in PC12 cells. J. Biol. Chem. 276:26680–26687.PubMedGoogle Scholar
  11. Dai, C., and Holland, E. C. (2001). Glioma models. Biochim. Biophys. Acta 1551:M19–M27.PubMedGoogle Scholar
  12. Deitmer, J. W., Verkhratsky, A. J., and Lohr, C. (1998). Calcium signalling in glial cells. Cell Calcium 24:405–416.PubMedGoogle Scholar
  13. Elferink, L. A., Trimble, W. S., and Scheller, R.H. (1989). Two vesicle-associated membrane protein genes are differentially expressed in the rat central nervous system. J. Biol. Chem. 264:11061–11064.PubMedGoogle Scholar
  14. Emmett, C. J., McNeeley, P. A., and Johnson, R. M. (1997). Evaluation of human astrocytoma and glioblastoma cell lines for nerve growth factor release. Neurochem. Int. 30:465–474.PubMedGoogle Scholar
  15. Fields, R. D., and Stevens, B. (2001). Response: Glia-neuronal culture—Do we need to change the paradigms. Trends Neurosci. 24:205–206.PubMedGoogle Scholar
  16. Goodall, A. R., Danks, K., Walker, J. H., Ball, S. G., and Vaughan, P. F. T. (1997). Occurrence of two types of secretory vesicles in the human neuroblastoma SH-SY5Y. J. Neurochem. 68:1542–1552.PubMedGoogle Scholar
  17. Grosche, J., Matyash, V., Möller, T., Verkhratsky, A., Reichenbach, A., and Kettenmann, H. (1999). Microdomains for neuron-glia interaction: Parallel fiber signaling to Bergmann glial cells. Nat. Neurosci. 2:139–143.PubMedGoogle Scholar
  18. Haydon, P. G. (2001). Glia: Listening and talking to the synapse. Nat. Rev. Neurosci. 2:185–193.PubMedGoogle Scholar
  19. Hepp, R., Perraut, M., Chasserot-Golaz, S., Galli, T., Aunis, D., Langley, K., and Grant, N. J. (1999). Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27:181–187.PubMedGoogle Scholar
  20. Hide, I., Tanaka, M., Inoue, A., Nakajima, K., Kohsaka, S., Inoue, K., and Nakata, Y. (2000). Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J. Neurochem. 75:965–972.PubMedGoogle Scholar
  21. Jahn, R., and Südhof, T. C. (1999). Membrane fusion and exocytosis. Annu. Rev. Biochem. 68:863–911.CrossRefPubMedGoogle Scholar
  22. Jeftinija, S. D., Jeftinija, K. V., and Stefanovic, G. (1997). Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res. 750:41–47.PubMedGoogle Scholar
  23. Kimelberg, H. K. (2001). Glia-neuronal culture models—Do we need to change the paradigms? Trends Neurosci. 24:205.PubMedGoogle Scholar
  24. Kretzschmar, S., Volknandt, W., and Zimmermann, H. (1996). Colocalization of syntaxin and SNAP-25 with synaptic vesicle proteins: A re-evaluation of functional models required? Neurosci. Res. 26:141–148.PubMedGoogle Scholar
  25. Madison, D. L., Krueger, W. H., Cheng, D., Trapp, B. D., and Pfeiffer, S. E. (1999). SNARE complex proteins, including the cognate pairVAMP-2 and syntaxin-4, are expressed in cultured oligodendrocytes. J. Neurochem. 72:988–998.PubMedGoogle Scholar
  26. Madison, D. L., Krüger, W. H., Kim, T., and Pfeiffer, S. E. (1996). Differential expression of rab3 isoforms in oligodendrocytes and astrocytes. J. Neurosci. Res. 45:258–268.PubMedGoogle Scholar
  27. Maienschein, V., Marxen, M., Volknandt, W., and Zimmermann, H. (1999). A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244.PubMedGoogle Scholar
  28. Martinez, O., and Goud, B. (1998). Rab proteins. Biochim. Biophys. Acta 1404:101–112.PubMedGoogle Scholar
  29. McMahon, H. T., Ushkaryov, Y. A., Edelmann, L., Link, E., Binz, T., Niemann, H., Jahn, R., and Südhof, T. C. (1993). Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364:346–349.PubMedGoogle Scholar
  30. Megías, L., Guerri, C., Fornas, E., Azorin, I., Bendala, E., Sancho-Tello, M., Durán, J. M., Tomás, M., Gomez-Lechon, M. J., and Renau-Piqueras, J. (2000). Endocytosis and transcytosis in growing astrocytes in primary culture. Possible implications in neural development. Int. J. Dev. Biol. 44:209–221.PubMedGoogle Scholar
  31. Nielsen, E., Severin, F., Backer, J. M., Hyman, A. A., and Zerial, M. (1999). Rab5 regulates motility of early endosomes on microtubules. Nat. Cell Biol. 1:376–382.PubMedGoogle Scholar
  32. Parpura,V., Basarsky, T. A., Liu,F., Jeftinija, K., Jeftinija, S., and Haydon, P.G. (1994). Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747.PubMedGoogle Scholar
  33. Parpura, V., Fang, Y., Basarsky, T., Jahn, R., and Haydon, P. G. (1995). Expression of synaptobrevin II, cellubrevin and syntaxin but not SNAP-25 in cultured astrocytes. FEBS Lett. 377:489–492.PubMedGoogle Scholar
  34. Queiroz, G., Meyer, D. K., Meyer, A., Starke, K., and von Kügelgen, I. (1999). A study of the mechanism of the release of ATP from rat cortical astroglial cells evoked by activation of glutamate receptors. Neuroscience 91:1171–1181.PubMedGoogle Scholar
  35. Rizo, J., and Südhof, T. C. (1998). Mechanics of membrane fusion. Nat. Struct. Biol. 5:839–842.PubMedGoogle Scholar
  36. Rossetto, O., Gorza, L., Schiavo, G., Schiavo, N., Scheller, R. H., and Montecucco, C. (1996). VAMP synaptobrevin isoforms 1 and 2 are widely and differentially expressed in nonneuronal tissues. J. Cell Biol. 132:167–179.PubMedGoogle Scholar
  37. Spector, T. (1978). Refinement of the Coomassie Blue method for protein quantitation. Anal. Biochem. 86:142–146.PubMedGoogle Scholar
  38. ST-Denis, J.-F., Cabaniols, J.-P., Cushman, S.W., and Roche, P.A. (1999). SNAP-23 participates in SNARE complex assembly in rat adiopose cells. Biochem. J. 338:709–715.PubMedGoogle Scholar
  39. Tohyama, T., Lee, V. M.-Y., and Trojanowski, J. Q. (1993). Co-expression of low molecular neurofilament protein and glial fibrillary acidic protein in established human glioma cell lines. Am. J.Pathol. 142:883–892.PubMedGoogle Scholar
  40. Verleysdonk, S., and Hamprecht, B. (2000). Synthesis and release of L-serine by rat astroglia-rich primary cultures. Glia 30:19–26.PubMedGoogle Scholar
  41. Vesce, S., Bezzi, P., and Volterra, A. (1999). The active role of astrocytes in synaptic transmission. Cell. Mol. Life Sci. 56:991–1000.PubMedGoogle Scholar
  42. Volknandt,W. (2002). Vesicular release mechanism in astrocytic signaling. Neurochem. Int. 1214:1–6.Google Scholar
  43. Ye, Z. C., and Sontheimer,H. (1999). Glioma cells release excitotoxic concentrations of glutamate. Cancer Res. 59:4383–4391.PubMedGoogle Scholar
  44. Zhang, L., Volknandt, W., Gundelfinger, E. D., and Zimmermann, H. (2000). A comparison of synaptic protein localization in hippocampal mossy fibre terminals and neurosecretory endings of the neurohypophysis using the cryo-immunogold technique. J. Neurocytol. 29:19–30.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Walter Volknandt
    • 1
  • Friederike Küster
    • 1
  • Alexander Wilhelm
    • 1
  • Eva Obermüller
    • 1
  • Arthur Steinmann
    • 1
  • Lixia Zhang
    • 1
  • Herbert Zimmermann
    • 1
  1. 1.Zoologisches Institut, Frankfurt am MainBiozentrum der J.W. Goethe-Universität, AK NeurochemieGermany;

Personalised recommendations