Novel starch thermoplastic/Bioglass® composites: Mechanical properties, degradation behavior and in-vitro bioactivity

  • I. B. Leonor
  • R. A. Sousa
  • A. M. Cunha
  • R. L. Reis
  • Z. P. Zhong
  • D. Greenspan
Article

Abstract

The present research aims to evaluate the possibility of creating new degradable, stiff and highly bioactive composites based on a biodegradable thermoplastic starch-based polymeric blend and a Bioglass® filler. Such combination should allow for the development of bioactive and degradable composites with a great potential for a range of temporary applications. A blend of starch with ethylene–vinyl alcohol copolymer (SEVA-C) was reinforced with a 45S5 Bioglass® powder presenting a granulometric distribution between 38 and 53 μm. Composites with 10 and 40 wt % of 45S5 Bioglass® were compounded by twin-screw extrusion (TSE) and subsequently injection molded under optimized conditions. The mechanical properties of the composites were evaluated by tensile testing, and their bioactivity assessed by immersion in a simulated body fluid (SBF) for different periods of time. The biodegradability of these composites was also monitored after several immersion periods in an isotonic saline solution. The tensile tests results obtained indicated that SEVA-C/Bioglass® composites present a slightly higher stiffness and strength (a modulus of 3.8 GPa and UTS of 38.6 MPa) than previously developed SEVA-C/Hydroxylapatite (HA) composites. The bioactivity of SEVA-C composites becomes relevant for 45S5 amounts of only 10 wt %. This was observed by scanning electron microscopy (SEM) and confirmed for immersion periods up to 30 days by both thin-film X-ray diffraction (TF-XRD) (where HA typical peaks are clearly observed) and induced coupled plasma emission (ICP) spectroscopy used to follow the elemental composition of the SBF as function of time. Additionally, it was observed that the composites are biodegradable being the results correlated with the correspondent materials composition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Hench, in “Bioceramics: Material Characteristics Versus in vivo Behavior” (New York Academy of Sciences, New York, 1988) p. 54.Google Scholar
  2. 2.
    L. L. Hench and Ö. Anderson, in “An introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 41.Google Scholar
  3. 3.
    J. P. Zhong and D. C. Greenspan, in “Bioceramics 11”, New York, USA, 1998, edited by R. Z. LeGeros and J. P. LeGeros (World Scientific Pub., Singapore, 1998) p. 415.Google Scholar
  4. 4.
    M. Neo, S. Kotani, Y. Fujita, T. Nakamura and T. Yamamuro, J. Biomed. Mater. Res. 26 (1992) 1419.Google Scholar
  5. 5.
    H. Oonishi, L. L. Hench, J. Wilson, Sugihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto and S. Mizokawa, ibid. 51 (2000) 37.Google Scholar
  6. 6.
    P. Ducheyne and Q. Qiu, Biomaterials 20 (1999) 2287.Google Scholar
  7. 7.
    L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.Google Scholar
  8. 8.
    W. Cao and L. L. Hench, Ceramics Int. 22 (1996) 493.Google Scholar
  9. 9.
    F. Mestral and R. A. L. Drew, J. Eur. Ceram. Soc. 5 (1984) 47.Google Scholar
  10. 10.
    W. Bonfield, J. Bowman and M. D. Grynpas, Composite Material for use in Orthopaedics, UK Patent 8032647 (1981).Google Scholar
  11. 11.
    W. Bonfield, in “Bioceramics 9”, Otsu, Japan, 1996, edited by T. Kokubo, T. Nakamura and F. Miyaji, (Elsevier Science, Oxford, 1996) p. 11.Google Scholar
  12. 12.
    W. Bonfield, in “Bioceramics 11”, New York, USA, 1998, edited by R. Z. LeGeros and J. P. LeGeros (World Scientific Pub., Singapore, 1998) p. 37.Google Scholar
  13. 13.
    W. Bonfield, in “Bioceramics: Material Characteristics Versus in vivo Behavior” (New York Academy of Sciences, New York, 1988) p. 173.Google Scholar
  14. 14.
    G. W. Hastings, in “Biodegradable Implants in Fracture Fxation” (World Scientific, Hong Kong, 1994) p. 19.Google Scholar
  15. 15.
    M. Wang, L. L. Hench and W. Bonfield, J. Biomed. Mater. Res. 42 (1998) 577.Google Scholar
  16. 16.
    J. Huang, M. Wang, I. Rehman, J. Knowles and W. Bonfield, in “Bioceramics 8”, Florida, USA, 1995, edited by L. L. Hench and J. Wilson (Pergamon Press, USA, 1995) p. 389.Google Scholar
  17. 17.
    M. Wang, W. Bonfield and L. L. Hench, in “Bioceramics 8”, Florida, USA, 1995, edited by L. L. Hench and J. Wilson (Pergamon Press, USA, 1995) p. 383.Google Scholar
  18. 18.
    J. C. Knowles and G. W. Hastings, J. Mater. Sci. Mater. Med. 4 (1993) 102.Google Scholar
  19. 19.
    N. R. Boeree, J. Dove, J. J. Cooper, J. Knowles, G. W. Hastings, Biomaterials 14 (1993) 793.Google Scholar
  20. 20.
    E. Ural, K. Kesenci, L. Fambri, C. Migliaresi and E. Piskin, ibid. 21 (2000) 2147.Google Scholar
  21. 21.
    Q. Liu, J. R. De Wijin, D. Bakker, M. Van Toledo and C. A. Van Blitterswijk, J. Mater. Sci. Mater. Med. 9 (1998) 23.Google Scholar
  22. 22.
    S. VainionpÄÄ, P. Rokkanen and P. TÖrmÄlÄ, Prog. Polym. Sci. 14 (1989) 679.Google Scholar
  23. 23.
    T. Hayashi, ibid. 19 (1994) 663.Google Scholar
  24. 24.
    K. W. Leong in “Biodegradable Implants in Fracture Fixation” (World Scientific, Hong Kong, 1994) pp. 45-53.Google Scholar
  25. 25.
    R. L. Reis and A. M. Cunha, J. Appl. Med. Polym. 4 (2000) 1.Google Scholar
  26. 26.
    R. L. Reis, A. M. Cunha, P. S. Allan and M. J. Bevis, J. Polym. Adv. Techn. 16 (1997) 263.Google Scholar
  27. 27.
    R. L. Reis, A. M. Cunha and M. J. Bevis, Med. Plast. Biomater. 4 (1997) 46.Google Scholar
  28. 28.
    R. A. Sousa, R. L. Reis, A. M. Cunha and M. J. Bevis, in “Bioceramics 13”, Bologna, Italy, 2000, edited by S. Giannini and A. Moroni (Trans Tech Publications, Zurich, 2000) p. 669.Google Scholar
  29. 29.
    R. L. Reis, A. M. Cunha, S. R. Lacerda, M. H. Fernandes and R. N. Correia, in “Bioceramics 9”, Otsuo, Japan, 1996, edited by T. Kokubo, T. Nakamura and F. Miyaji (Elsevier Science, Oxford, 1996) p. 435.Google Scholar
  30. 30.
    R. L. Reis, S. C. Mendes, Y. P. Bovell, A. M. Cunha, J. D. De Bruijn and C. A. Van Blitterswijk, in “Proceedings of the 13th European Conference on Biomaterials” (Göteborg, Set. 1997).Google Scholar
  31. 31.
    S. Mendes, Y. Bovell, R. L. Reis, C. A. Van Blitterswijk and J. D. De Bruijn, Biomaterials 22 (2001) 2057.Google Scholar
  32. 32.
    M. E. Gomes, R. L. Reis, A. M. Cunha, C. A. Blitterswijk and J. D. De Bruijn, ibid. 22 (2001) 1911.Google Scholar
  33. 33.
    Y. Abe, T. Kokubo and T. Yamamuro, J. Mater. Sci. Mater. Med. 1 (1990) 233.Google Scholar
  34. 34.
    C. M. Vaz, R. L. Reis and A. M. Cunha, Biomaterials 23 (2002) 629.Google Scholar
  35. 35.
    R. L. Reis and A. M. Cunha, in “Proceedings of Antec'98 — Plastics on my Mind”, Society of Plastics Engineers, Atlanta, USA, (1998) p. 2733.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • I. B. Leonor
    • 1
  • R. A. Sousa
    • 1
  • A. M. Cunha
    • 1
  • R. L. Reis
    • 1
  • Z. P. Zhong
    • 2
  • D. Greenspan
    • 2
  1. 1.Department of Polymer EngineeringUniversity of Minho, Campus de AzuremGuimarãesPortugal
  2. 2.US Biomaterials CorporationAlachua, FloridaUSA

Personalised recommendations