Advertisement

Acta Applicandae Mathematica

, Volume 73, Issue 1–2, pp 175–219 | Cite as

Universal Central Extensions of Lie Groups

  • Karl-Hermann Neeb
Article

Abstract

We call a central Z-extension of a group G weakly universal for an Abelian group A if the correspondence assigning to a homomorphism ZA the corresponding A-extension yields a bijection of extension classes. The main problem discussed in this paper is the existence of central Lie group extensions of a connected Lie group G which is weakly universal for all Abelian Lie groups whose identity components are quotients of vector spaces by discrete subgroups. We call these Abelian groups regular. In the first part of the paper we deal with the corresponding question in the context of topological, Fréchet, and Banach–Lie algebras, and in the second part we turn to the groups. Here we start with a discussion of the weak universality for discrete Abelian groups and then turn to regular Lie groups A. The main results are a Recognition and a Characterization Theorem for weakly universal central extensions.

central extension Lie algebra infinite-dimensional Lie group universal central extension Lie algebra cohomology period map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feigin, B. L.: On the cohomology of the Lie algebra of vector fields and the current algebra, Sel. Math. Soc. 7(1) (1988), 49-62.Google Scholar
  2. 2.
    Feigin, B. L. and Fuks D. B.: Cohomologies of Lie groups and Lie algebras, In: A. L. Onishchik and E. B. Vinberg (eds), Lie Groups and Lie Algebras II, Encyclop. Math. Sci. 21, Springer-Verlag, New York, 2000.Google Scholar
  3. 3.
    Hirzebruch, F. and Scharlau W.: Einführung in die Funktionalanalysis, B. I, Wissenschaftsverlag, 1971.Google Scholar
  4. 4.
    Hochschild, G.: The Structure of Lie Groups, Holden Day, San Francisco, 1965.Google Scholar
  5. 5.
    Köthe, G.: Topological Vector Spaces I, Grundlehren der Math. Wiss. 159, Springer-Verlag, Berlin, 1969.Google Scholar
  6. 6.
    Maier, P.: Central extensions of topological current algebras, In: S. Stasburger et al. (eds), Geometry and Analysis on Finite and Infinite-Dimensional Lie Groups, Proc. Workshop on Lie Groups and Lie Algebras, Bedlewo (Sept. 2000), Banach Center Publications, to appear.Google Scholar
  7. 7.
    Maier, P. and Neeb, K.-H.: Central extensions of current groups, Preprint, TU-Darmstadt, 2002.Google Scholar
  8. 8.
    Milnor, J.: Remarks on infinite-dimensional Lie groups, In: B. DeWitt (ed.), Proc. Summer School on Quantum Gravity, Les Houches, 1983.Google Scholar
  9. 9.
    Mimura, M.: Homotopy theory of Lie groups, In: I. M. James (ed.), Handbook of Algebraic Topology, North-Holland, Amsterdam, 1995.Google Scholar
  10. 10.
    Neeb, K.-H.: Central extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier, to appear.Google Scholar
  11. 11.
    Neeb, K.-H.: Geometry and structure of L *-groups, in preparation.Google Scholar
  12. 12.
    Neeb, K.-H.: Classical Hilbert-Lie groups, their extensions and their homotopy groups, In: S. Strasburger et al. (eds), Geometry and Analysis on Finite and Infinite-Dimensional Lie Groups, Proc. Workshop on Lie Groups and Lie Algebras, Bedlewo (Sept. 2000), Banach Center Publications, to appear.Google Scholar
  13. 13.
    Neeb, K.-H.: Current groups over non-compact manifolds, in preparation.Google Scholar
  14. 14.
    Neeb, K.-H.: Steinberg-Lie groups, in preparation.Google Scholar
  15. 15.
    Pressley, A. and Segal, G.: Loop Groups, Oxford Univ. Press, Oxford, 1986.Google Scholar
  16. 16.
    Roger, C.: Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbres de Virasoro et généralisations, Rep. Math. Phys. 35 (1995), 225-266.Google Scholar
  17. 17.
    Rudin, W.: Functional Analysis, McGraw-Hill, Englewood Cliffs, 1973.Google Scholar
  18. 18.
    Treves, F.: Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967.Google Scholar
  19. 19.
    Weibel, C. A.: An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge Univ. Press, 1995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Karl-Hermann Neeb
    • 1
  1. 1.University of Technology DarmstadtDarmstadtGermany

Personalised recommendations