Foundations of Physics

, Volume 32, Issue 8, pp 1273–1293 | Cite as

The Observer in the Quantum Experiment

  • Bruce Rosenblum
  • Fred Kuttner


A goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. Such intrusion is usually seen to arise because observation somehow selects a single actuality from among the many possibilities represented by the wavefunction. The issue is typically treated in terms of the mathematical formulation of the quantum theory. We attempt to address a different manifestation of the quantum measurement problem in a theory-neutral manner. With a version of the two-slit experiment, we demonstrate that an enigma arises directly from the results of experiments. Assuming that no observable physical phenomena exist beyond those predicted by the theory, we argue that no interpretation of the quantum theory can avoid a measurement problem involving the observer.

quantum observer interpretation measurement experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Mermin, “What's Wrong with These Questions?”, Physics Today 54(2), 11–12 (2001).Google Scholar
  2. 2.
    S. Goldstein, “Quantum mechanics without observers—part one, ” Physics Today 51(3), 42–46 (1998); “Quantum mechanics without observers—part two, ” Physics Today 51(4), 38–42 (1998), and references therein. R. B. Griffiths and R. Omnès, “Consistent histories and quantum measurements, ” Physics Today 52(8), 26–31 (1999).Google Scholar
  3. 3.
    C. A. Fuchs and A. Peres, “Quantum theory needs no “interpretation”, ” Physics Today 53(3), 70–71 (2000).Google Scholar
  4. 4.
    H. P. Stapp, “Attention, intention, and will in quantum physics, ” J. Consciousness Studies 6(8–9), 143–164 (1999).Google Scholar
  5. 5.
    E. Aronson, Encyclopedia of Psychology 2000 (American Psychological Association, Washington, D.C).Google Scholar
  6. 6.
    J. A. Wheeler, “Delayed-choice experiments and the Bohr-Einstein dialog, ” The American Philosophical Society and the Royal Society, Papers read at a meeting June 5, 1980.Google Scholar
  7. 7.
    M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, “Wave-particle duality of C60 molecules, ” Nature 401(6754), 680–2 (1999).Google Scholar
  8. 8.
    J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, “Quantum superposition of distinct macroscopic states, ” Nature 406(6791), 43–46 (2000).PubMedGoogle Scholar
  9. 9.
    B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects, ” Nature 413, 400–403 (2001).Google Scholar
  10. 10.
    K. Hess and W. Philipp, “Bell's theorem and the problems of decidability between the views of Einstein and Bohr, ” Proc. Nat. Acad. Sci. 98, 14228–14223 (2001).Google Scholar
  11. 11.
    R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1994), p. 342.Google Scholar
  12. 12.
    J. von Neumann, The Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1955; originally published 1932).Google Scholar
  13. 13.
    O. Ulfbeck and A. Bohr. “Genuine fortuitousness. Where did that click come from?, ” Found. Phys. 31, 757 (2001).Google Scholar
  14. 14.
    W. H. Zurek, “Decoherence and the transition from quantum to classical, ” Physics Today 50(10), 36–44 (1991).Google Scholar
  15. 15.
    W. H. Zurek, “Preferred states, predictability, classicality and the environment-induced decoherence, ” Progr. Theoret. Phys. 88(2), 282–312 (1999).Google Scholar
  16. 16.
    R. B. Griffiths and R. Omnès, “Consistent histories and quantum measurements, ” Physics Today 52(8), 26–31 (1999).Google Scholar
  17. 17.
    H. Everett, III, “'Relative state’ formulation of quantum mechanics, ” Rev. Mod. Phys. 29(3), 454–462 (1957).Google Scholar
  18. 18.
    E. J. Squires, “Many views of one world-an interpretation of quantum theory, ” Eur. J. Phys. 8(3), 171–173 (1987).Google Scholar
  19. 19.
    N. D. Mermin, “What is quantum mechanics trying to tell us?, ” Amer. J. Phys. 66(9), 753–767 (1998).Google Scholar
  20. 20.
    G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems, ” Phys. Rev. D 34(2), 470–491 (1986).Google Scholar
  21. 21.
    R. Penrose, The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford University Press, Oxford, 1989).Google Scholar
  22. 22.
    H. P. Stapp, “Quantum theory and the role of mind in nature, ” Found. Phys. 31, 1465 (2001).Google Scholar
  23. 23.
    D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, ” Phys. Rev. 85, 166–193 (1952).Google Scholar
  24. 24.
    J. R. Fanchi, “Quantum potential in relativistic dynamics, ” Found. Phys. 30, 1161 (2000).Google Scholar
  25. 25.
    D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993), p. 181.Google Scholar
  26. 26.
    D. Bohm, Wholeness and the Implicate Order (Routledge & Kegan Paul, London, 1980). D. Bohm and B. J. Hiley, The Undivided Universe (Routledge, London, 1993).Google Scholar
  27. 27.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987), p. 27.Google Scholar
  28. 28.
    F. Wilczek, Physics Today 52(6), 11–12 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Bruce Rosenblum
    • 1
  • Fred Kuttner
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSanta Cruz

Personalised recommendations