Acta Mathematica Hungarica

, Volume 96, Issue 3, pp 187–220 | Cite as

Self-intersections of random walks on lattices

  • Xian Yin Zhou
Article
  • 51 Downloads

Abstract

Let {Xnd}n≥0be a uniform symmetric random walk on Zd, and Π(d) (a,b)={Xnd ∈ Zd : a ≤ n ≤ b}. Suppose f(n) is an integer-valued function on n and increases to infinity as n↑∞, and let
$$E_n^{\left( d \right)} = \left\{ {\prod {^{\left( d \right)} } \left( {0,n} \right) \cap \prod {^{\left( d \right)} } \left( {n + f\left( n \right),\infty } \right) \ne \emptyset } \right\}$$
Estimates on the probability of the event \(E_n^{\left( d \right)} \) are obtained for \(d \geqq 3\). As an application, a necessary and sufficient condition to ensure \(P\left( {E_n^{\left( d \right)} ,{\text{i}}{\text{.o}}{\text{.}}} \right) = 0\quad {\text{or}}\quad {\text{1}}\) is derived for \(d \geqq 3\). These extend some results obtained by Erdős and Taylor about the self-intersections of the simple random walk on Zd.
random walk self-intersection hitting time Green function range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. De Masi, P. A. Ferrari, S. Goldstein and W. D. Wick, An invariance principle for reversible Markov processes, Applications to random motions in random environments, J. Stati. Phys., 55 (1989), 787–855.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Erdős and S. J. Taylor, Some intersection properties of random walk paths, Acta Math. Acad. Sci. Hung., 11 (1960), 231–248.CrossRefGoogle Scholar
  3. [3]
    G. Felder and J. Fröhlich, Intersection properties of simple random walks: A renormalization group approach, Comm. Math. Phys., 97 (1985), 111–124.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    G. F. Lawler, Intersections of Random Walks, Birkhäuser (Boston, 1991).Google Scholar
  5. [5]
    F. Spitzer, Principles of Random Walks, Springer-Verlag (1976).Google Scholar
  6. [6]
    A. Telcs, Random walks on graphs, electric networks and fractals, Prob. Th. Rel. Fields, 82 (1989), 435–449.MATHMathSciNetGoogle Scholar
  7. [7]
    N. Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct. Anal., 63 (1985), 215–239.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    X. Y. Zhou, Green function estimates and their applications to the intersections of symmetric random walks, Stoch. Proc. Appl., 48 (1993), 31–60.MATHCrossRefGoogle Scholar
  9. [9]
    X. Y. Zhou, On the range of reversible random walks on Z 2 in a random environment, J. Th. Probab., 8 (1995), 453–473.MATHCrossRefGoogle Scholar
  10. [10]
    X. Y. Zhou, An intersection property of the simple random walks in Z d, Acta Math. Appl. Sinica. Google Scholar

Copyright information

© Kluwer Academic Publishers/Akadémiai Kiadó 2002

Authors and Affiliations

  • Xian Yin Zhou
    • 1
  1. 1.Department of MathematicsBeijing Normal UniversityBeijingP.R. China

Personalised recommendations