Advertisement

Journal of Statistical Physics

, Volume 108, Issue 5–6, pp 755–765 | Cite as

Sinai Billiards, Ruelle Zeta-functions and Ruelle Resonances: Microwave Experiments

  • S. Sridhar
  • W. T. Lu
Article

Abstract

We discuss the impact of recent developments in the theory of chaotic dynamical systems, particularly the results of Sinai and Ruelle, on microwave experiments designed to study quantum chaos. The properties of closed Sinai billiard microwave cavities are discussed in terms of universal predictions from random matrix theory, as well as periodic orbit contributions which manifest as “scars” in eigenfunctions. The semiclassical and classical Ruelle zeta-functions lead to quantum and classical resonances, both of which are observed in microwave experiments on n-disk hyperbolic billiards.

Microwave hyperbolic Sinai billiard correlation Ruelle zeta-function resonances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    S. Smale, Bull. Amer. Math. Soc. 73:747 (1967).Google Scholar
  2. 2.
    Ya. Sinai, Russian Math. Surveys 25:137 (1970).Google Scholar
  3. 3.
    M. Wojtkowski, Comm. Math. Phys. 105:391 (1986).Google Scholar
  4. 4.
    L. A. Bunimovich, Comm. Math. Phys. 65:295 (1979).Google Scholar
  5. 5.
    D. Ruelle, Phys. Rev. Lett. 56:405 (1986); J. Stat. Phys. 44:481 (1986).Google Scholar
  6. 6.
    M. Pollicott, Ann. Math. 131:331 (1990).Google Scholar
  7. 7.
    S. Sridhar, Phys. Rev. Lett. 67:785 (1991).Google Scholar
  8. 8.
    A. Kudrolli, S. Sridhar, A. Pandey, and R. Ramaswamy, Phys. Rev. E 49:R11 (1994).Google Scholar
  9. 9.
    P. Pradhan and S. Sridhar, Phys. Rev. Lett. 85:2360 (1995).Google Scholar
  10. 10.
    A. Kudrolli, V. Kidambi, and S. Sridhar, Phys. Rev. Lett. 75:822 (1995).Google Scholar
  11. 11.
    W. Lu, M. Rose, K. Pance, and S. Sridhar, Phys. Rev. Lett. 82:5233 (1999); W. Lu, L. Viola, K. Pance, M. Rose, and S. Sridhar, Phys. Rev. E 61:3652 (2000).Google Scholar
  12. 12.
    K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett. 85:2737 (2000); W. T. Lu, K. Pance, P. Pradhan, and S. Sridhar, Phys. Scrip. T90:238 (2001).Google Scholar
  13. 13.
    S. Sridhar and A. Kudrolli, Phys. Rev. Lett. 72:2175 (1994).Google Scholar
  14. 14.
    T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299:189 (1998).Google Scholar
  15. 15.
    H.-J. Stockmann, Quantum Chaos: An Introduction (Cambridge University Press, 1999).Google Scholar
  16. 16.
    S. Sridhar, D. Hogenboom, and B. A. Willemsen, J. Stat. Phys. 68:239 (1992).Google Scholar
  17. 17.
    E. J. Heller, Phys. Rev. Lett. 53:1515 (1984).Google Scholar
  18. 18.
    P. Gaspard and S. A. Rice, J. Chem. Phys. 91:2225, 2242, 2255 (1989).Google Scholar
  19. 19.
    M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, 1990).Google Scholar
  20. 20.
    L.-S. Young, Notices of the AMS 45:1318 (1998); Ann. Math. 147:585 (1998).Google Scholar
  21. 21.
    P. Cvitanović and B. Eckhardt, J. Phys. A 24:L237 (1991).Google Scholar
  22. 22.
    P. Gaspard, D. Alonso, T. Okuda, and K. Nakamura, Phys. Rev. E 50:2591 (1994).Google Scholar
  23. 23.
    P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Classical and Quantum Chaos, www.nbi.dk/ChaosBook/ (Niels Bohr Institute, Copenhagen, 2001).Google Scholar
  24. 24.
    P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, 1998).Google Scholar
  25. 25.
    P. Cvitanović and B. Eckhardt, Phys. Rev. Lett. 63:823 (1989).Google Scholar
  26. 26.
    C. Manderfeld, J. Weber, and F. Haake, J. Phys. A 34:9893 (2001).Google Scholar
  27. 27.
    O. Bohigas, P. Leboeuf, and M. J. Sanchez, Found. Phys. 31:489 (2001).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • S. Sridhar
    • 1
  • W. T. Lu
    • 1
  1. 1.Department of PhysicsNortheastern UniversityBoston

Personalised recommendations