Molecular Breeding

, Volume 9, Issue 3, pp 149–158 | Cite as

Practical considerations for pharmaceutical antibody production in different crop systems

  • Eva Stoger
  • Markus Sack
  • Yolande Perrin
  • Carmen Vaquero
  • Esperanza Torres
  • Richard M. Twyman
  • Paul Christou
  • Rainer Fischer

Abstract

The potential of plant cells to produce functional recombinantantibodies has been demonstrated in a number of different plant systems. Wepresent a comparative study of a well-defined target protein, a single chain Fvantibody, in different transgenic crop species and cultured tissues. The effectof different regulatory elements and signals for subcellular targeting areconsidered. Practical considerations for the choice of a particular cropsystem,such as yield, storage, distribution and containment properties are discussed.

Cereals KDEL Molecular farming Pharmaceutical antibodies Plantibodies Recombinant proteins scFv Tobacco Transgenic crops 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conrad U. and Fiedler U. 1998. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: An essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol. Biol. 38: 101-109.Google Scholar
  2. Contreras R., Carrez D., Kinghorn J.R., Vandenhondel C.A.M.J.J. and Fiers W. 1991. Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Bio/Technology 9: 378-381.PubMedGoogle Scholar
  3. Daniell H., Streatfield S.J. and Wycoff K. 2001. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6: 219-224.PubMedGoogle Scholar
  4. De Jaeger G., Buys E., Eeckhout D., De Wilde C., Jacobs A., Kapila J. et al. 1998. High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259: 1-10.Google Scholar
  5. Doran P.M. 2000. Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11: 199-204.PubMedGoogle Scholar
  6. Fecker L.F., Kaufmann A., Commandeur U., Commandeur J., Koenig R. and Burgermeister W. 1996. Expression of singlechain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25 kDa protein in Escherichia coli and nicotiana benthamiana. Plant Mol. Biol. 32: 979-986.PubMedGoogle Scholar
  7. Fiedler U., Phillips J., Artsaenko O. and Conrad U. 1997. Optimization of scFv antibody production in transgenic plants. Immunotechnol. 3: 205-216.Google Scholar
  8. Fischer R., Schumann D., Zimmermann S., Drossard J., Sack M. and Schillberg S. 1999. Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur. J. Biochem. 262: 810-816.PubMedGoogle Scholar
  9. Fischer R. and Emans N. 2000. Molecular farming of pharmaceutical proteins. Transgenic Res. 9: 279-299.PubMedGoogle Scholar
  10. Fu X., Duc L.T., Fontana S., Bong B.B., Tinjuangjun P., Sudhakar D. et al. 2000. Linear transgene constructs lacking vector backbone sequences generate low copy number transgenic plants with simple integration patterns. Transgenic Res. 9: 11-19.PubMedGoogle Scholar
  11. Giddings G., Allison G., Brooks D. and Carter A. 2000. Transgenic plants as factories for biopharmaceuticals. Nature Biotechnol. 18: 1151-1156.Google Scholar
  12. Gollasch H.E., Schroeder S., Moore A., Tabe L.M., Craig S., Hardie D.C. et al. 1995. Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol. 107: 1233-1239.PubMedGoogle Scholar
  13. Gressel J. 1999. Tandem constructs: preventing the rise of superweeds. Trends Biotechnol. 17: 361-366.PubMedGoogle Scholar
  14. Hondred D., Walker J.M., Mathews D.E. and Vierstra R.D. 1999. Use of ubiquitin fusions to augment protein expression in transgenic plants. Plant Physiol. 119: 713-723.PubMedGoogle Scholar
  15. Hunt A.G. 1994. Messenger RNA 3' end formation in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 45: 47-60.Google Scholar
  16. Khoudi H., Laberge S., Ferullo J.M., Bazin R., Darveau A., Castonguay Y. et al. 1999. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol. Bioeng. 64: 135-143.PubMedGoogle Scholar
  17. Kusnadi A.R., Nikolov Z.L. and Howard J.A. 1997. Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnol. Bioeng. 56: 473-484.Google Scholar
  18. Kusnadi A., Hood E., Witcher D., Howard J. and Nikolov Z. 1998. Production and purification of two recombinant proteins from transgenic corn. Biotechnol. Prog. 14: 149-155.PubMedGoogle Scholar
  19. LaVallie E.R. and McCoy J.M. 1995. Gene fusion expression systems in Escherichia coli. Curr. Opin. Biotechnol. 6: 501-506.PubMedGoogle Scholar
  20. Moloney M.M. 1995. “Molecular Farming” in plants: achievements and prospects. Biotechnol. Eng. 9: 3-9.Google Scholar
  21. Perrin Y., Vaquero C., Gerrard I., Sack M., Drossard J., Stoger E. et al. 2000. Transgenic pea seeds as bioreactors for the production of a single chain Fv fragment (scFv) antibody used in cancer diagnosis and therapy. Mol. Breeding 6: 345-352.Google Scholar
  22. Reichert J.M. 2000. New biopharmaceuticals in the USA: trends in development and marketing approvals 1995-1999. Trends Biotechnol. 18: 364-369.PubMedGoogle Scholar
  23. Rose A.B. and Beliakoff J.A. 2000. Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol. 122: 535-542.PubMedGoogle Scholar
  24. Schouten A., Roosien J., van Engelen F.A., de Jong G.A.M., Borst-Vrenssen A.W.M., Zilverentant J.F. et al. 1996. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both cytosol and the secretory pathway in transgenic tobacco. Plant. Mol. Biol. 30: 781-793.PubMedGoogle Scholar
  25. Stoger E., Vaquero C., Torres E., Sack M., Nicholson L., Drossard J. et al. 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42: 583-590.Google Scholar
  26. Torres E., Vaquero C., Nicholson L., Sack M., Stöger E., Drossard J. et al. 1999. Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res. 8: 441-449.PubMedGoogle Scholar
  27. Van der Logt C.P.E., Sidebottom C.S. and Davis P.J. 1998. Antibody production in plants. In: Shewry P.R., Napier J.A. and Davies P.J. (eds), Engineering Crop Plants for Industrial End Uses. Portland Press, London.Google Scholar
  28. Vaquero C., Sack M., Chandler J., Drossard J., Schuster F., Monecke M. et al. 1999. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc. Natl. Acad. Sci. USA 96: 11128-11133.PubMedGoogle Scholar
  29. Voss A., Nierbach M., Hain R., Hirsch H.J., Liao Y.C., Kreuzaler F. et al. 1995. Reduced virus infectivity in N.tabacum secreting a TMV-specific full-size antibody. Mol. Breeding 1: 39-50.Google Scholar
  30. Witcher D.R., Hood E.E., Peterson D., Bailey M., Bond D., Kusnadi A. et al. 1998. Commercial production of β-glucuronidase (GUS): a model system for the production of proteins in plants. Mol. Breeding 4: 301-312.Google Scholar
  31. Zhong G.-Y., Peterson D., Delaney D.E., Bailey M., Witcher D.R., Register J.C. et al. 1999. Commercial production of aprotinin in transgenic maize seeds. Mol. Breeding 5: 345-356.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Eva Stoger
    • 1
  • Markus Sack
    • 2
  • Yolande Perrin
    • 3
  • Carmen Vaquero
    • 2
  • Esperanza Torres
    • 4
  • Richard M. Twyman
    • 1
  • Paul Christou
    • 1
  • Rainer Fischer
    • 1
  1. 1.Fraunhofer Department for Molecular BiotechnologyIUCT, GrafschaftSchmallenbergGermany
  2. 2.Institute for Biology IRWTH AachenAachenGermany
  3. 3.Univ. de CompiegneFrance
  4. 4.Sainsbury LaboratoryNorwichUK

Personalised recommendations