Journal of Low Temperature Physics

, Volume 128, Issue 5–6, pp 167–231 | Cite as

Quantum Turbulence

  • W. F. Vinen
  • J. J. Niemela

Abstract

The paper presents an extended review of our knowledge and understanding of turbulence in a superfluid (4He and 3He-B), a system in which turbulent flow can be greatly influenced by quantum effects such as those leading to the restriction of rotational superfluid flow to quantized vortex lines. Introductions are included to relevant aspects of classical turbulence and superfluid dynamics, and there are discussions of experimental methods and of the use of computer simulations. A brief description is given of counterflow turbulence, which was discovered 50 years ago and for many aspects of which there is a well-established theory. Counterflow turbulence has no classical analogue. Most of the paper is devoted to more recent experimental and theoretical work, which has focussed on types of quantum turbulence that do have classical analogues, especially those relating to the simplest case of turbulence that is spatially homogeneous. It is argued that turbulence in the quantum case is probably very similar to that in the classical case on length scales large compared with a characteristic quantum length scale equal to the spacing between the vortex lines. On smaller length scales the two types of turbulence must be very different, and the probable characteristics of quantum turbulence on these small length scales are explored. Emphasis is placed on the need for further experiments, especially at very low temperatures, where crucial ideas can be checked in a particularly straightforward way, and where novel quantum effects are likely to play an important role.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. R. Tilley and J. Tilley, Superfluidity and Superconductivity, 3rd ed., Adam Hilger, Bristol (1990).Google Scholar
  2. 2.
    R. J. Donnelly and C. F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998).Google Scholar
  3. 3.
    I. M. Khalatnikov, An Introduction to the Theory of Superfluidity, W. A. Benjamin Inc., New York (1965).Google Scholar
  4. 4.
    R. J. Donnelly, Quantized Vortices in Helium II, Cambridge University Press (1991).Google Scholar
  5. 5.
    C. F. Barenghi, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Springer, Berlin (2001), p. 17.Google Scholar
  6. 6.
    W. F. Vinen, Liquid Helium: Proc. Int. School of Physics Enrico Fermi, Course XXI, Academic Press, New York (1963), p.336.Google Scholar
  7. 7.
    C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Philos. Trans. Roy. Soc. London Ser. A 311, 433 (1984).Google Scholar
  8. 8.
    W. H. Zurek, Nature 317, 505 (1985).Google Scholar
  9. 9.
    D. D. Awschalom and K. W. Schwarz, Phys. Rev. Lett. 52, 49 (1984).Google Scholar
  10. 10.
    D. C. Samuels, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Springer, Berlin (2001), p. 97.Google Scholar
  11. 11.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).Google Scholar
  12. 12.
    S. N. Fisher, A. J. Hale, A. M. Guénault, and G. R. Pickett, Phys. Rev. Lett. 86, 244 (2001).Google Scholar
  13. 13.
    D. I. Bradley, S. N. Fisher, A. M. Guénault, M. Lowe, G. R. Pickett, and A. Rahm, J. Low Temp. Physics 124, 113 (2001).Google Scholar
  14. 14.
    W. F. Vinen, J. Low Temp. Phys. 126, 333 (2002).Google Scholar
  15. 15.
    M. Van Dyke, An Album of Fluid Motion, The Parabolic Press (1982).Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd Ed., Butterworth-Heinemann, Oxford (1987).Google Scholar
  17. 17.
    S. P. Godfrey, D. C. Samuels, and C. F. Barenghi, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Springer, Berlin (2001), p. 184.Google Scholar
  18. 18.
    P. L. Walstrom, J. G. Weisend II, J. R. Maddocks, and S. W. Van Sciver, Cryogenics 28, 101 (1988).Google Scholar
  19. 19.
    S. Fuzier, B. Baudouy, and S. W. Van Sciver, Cryogenics 41, 453 (2001).Google Scholar
  20. 20.
    S. P. Godfrey, D. C. Samuels, and C. F. Barenghi, Phys. Fluids 13, 983 (2001).Google Scholar
  21. 21.
    C. E. Swanson and R. J. Donnelly, to be published.Google Scholar
  22. 22.
    G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press (1953).Google Scholar
  23. 23.
    U. Frisch, Turbulence, Cambridge University Press (1995).Google Scholar
  24. 24.
    K. R. Sreenivasan, Phys. Fluids 7, 2778 (1995).Google Scholar
  25. 25.
    J. O. Henze, Turbulence, 2nd Ed., McGraw-Hill, New York (1975).Google Scholar
  26. 26.
    R. P. Feynman, Progress in Low Temperature Physics, Vol. 1, Chap. 2, C. J. Gorter (ed.), North-Holland, Amsterdam (1955).Google Scholar
  27. 27.
    W. F. Vinen, Proc. Roy. Soc A 240, 114, 128 (1957).Google Scholar
  28. 28.
    W. F. Vinen, Proc. Roy. Soc A 242, 489 (1957).Google Scholar
  29. 29.
    J. Maurer and P. Tabeling, Europhys. Lett. 43, 29 (1998).Google Scholar
  30. 30.
    M. R. Smith, R. J. Donnelly, N. Goldenfeld, and W. F. Vinen, Phys. Rev. Lett. 71, 2583 (1993).Google Scholar
  31. 31.
    S. R. Stalp, L. Skrbek, and R. J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999).Google Scholar
  32. 32.
    Leonardo da Vinci, Drawings, Royal Library, Windsor, Nos. 12579, 12659-62 (1507–1510).Google Scholar
  33. 33.
    M. Raffel, C. Willert, and J. Kompenhaus, Particle Image Velocimetry, Springer (1998).Google Scholar
  34. 34.
    R. J. Donnelly, A. N. Karpetis, J. J. Niemela, K. R. Sreenivasan, W. F. Vinen, and C. M. White, J. Low Temp. Phys. 126, 327 (2002).Google Scholar
  35. 35.
    G. Compte-Bellot, The Handbook of Fluid Mechanics, R. W. Johnson (ed.), CRC Press, New York (1998), p. 34-1.Google Scholar
  36. 36.
    L. M. Fingerson and R. K. Menon, The Handbook of Fluid Mechanics, R. W. Johnson (ed.), CRC Press, New York (1998), pp. 35-1.Google Scholar
  37. 37.
    J. T. Tough, Progress in Low Temperature Physics, Vol. 8, D. F. Brewer (ed.), North-Holland Publishing Co., Amsterdam (1982), p. 133.Google Scholar
  38. 38.
    M. R. Smith, D. K. Hilton, and S. V. Van Sciver, Phys. Fluids 11, 751 (1999).Google Scholar
  39. 39.
    M. Niemetz, H. Kerscher, and W. Schoepe, J. Low Temp. Phys. 126, 287 (2002).Google Scholar
  40. 40.
    D. Çelik, M. R. Smith, and S. W. Van Sciver, to be published.Google Scholar
  41. 41.
    K. R. Atkins, Phys. Rev. 116, 1339 (1959).Google Scholar
  42. 42.
    G. Careri, Progress in Low Temperature Physics, Vol. 3, C. J. Gorter (ed.), North-Holland, Amsterdam (1961), p. 58.Google Scholar
  43. 43.
    D. D. Awschalom, F. P. Milliken, and K. W. Schwarz, Phys. Rev. Lett. 53, 1372 (1984).Google Scholar
  44. 44.
    H. E. Hall and W. F. Vinen, Proc. Roy. Soc. A 238, 204, 205 (1956).Google Scholar
  45. 45.
    L. Skrbek, J. J. Niemela, and R. J. Donnelly, Phys. Rev. Lett. 85, 2973 (2000).Google Scholar
  46. 46.
    W. F. Vinen, J. Low Temp. Phys. 124, 101 (2001).Google Scholar
  47. 47.
    D. C. Samuels and C. F. Barenghi, Phys. Rev. Lett. 81, 4381 (1998).Google Scholar
  48. 48.
    S. I. Davis, P. C. Hendry, and P. V. E. McClintock, Phys. B 280, 43 (2000).Google Scholar
  49. 49.
    K. W. Schwarz, Phys. Rev. B 38, 2398 (1988) and references therein.Google Scholar
  50. 50.
    M. Tsubota, T. Araki, and S. K. Nemirovskii, Phys. Rev. B 62, 11751 (2000).Google Scholar
  51. 51.
    C. F. Barenghi, G. H. Bauer, D. C. Samuels, and R. J. Donnelly, Czech J. Phys. 46,Suppl. 1, 29 (1996).Google Scholar
  52. 52.
    C. F. Barenghi, D. C. Samuels, G. H. Bauer, and R. J. Donnelly, Phys. Fluids 9, 2631 (1997).Google Scholar
  53. 53.
    D. C. Samuels, Phys. Rev. B 47, 1107 (1993).Google Scholar
  54. 54.
    D. C. Samuels, Phys. Rev. B 46, 11714 (1992).Google Scholar
  55. 55.
    S. P. Godfrey and D. C. Samuels, Phys. Rev. B 61, 4190 (2000).Google Scholar
  56. 56.
    D. J. Melotte and C. F. Barenghi, Phys. Rev. Lett. 80, 4181 (1998).Google Scholar
  57. 57.
    O. C. Idowu, A. Willis, C. F. Barenghi, and D. C. Samuels, Phys. Rev. B 62, 3409 (2000).Google Scholar
  58. 58.
    O. C. Idowu, D. Kivotides, C. F. Barenghi, and D. C. Samuels, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Springer, Berlin (2001), p. 162.Google Scholar
  59. 59.
    N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947).Google Scholar
  60. 60.
    V. L. Ginsburg and L. P. Pitaevskii, Sov. Phys. JETP 7, 858 (1958).Google Scholar
  61. 61.
    E. P. Gross, J. Math. Phys. 4, 195 (1963).Google Scholar
  62. 62.
    P. H. Roberts and N. G. Berloff, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Springer, Berlin (2001), p. 235.Google Scholar
  63. 63.
    L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).Google Scholar
  64. 64.
    G. W. Rayfield and F. Reif, Phys. Rev. 136, A1194 (1964).Google Scholar
  65. 65.
    H. E. Hall, Proc. Roy. Soc. London A 245, 546 (1958).Google Scholar
  66. 66.
    J. Koplik and H. Levine, Phys. Rev. Lett. 71, 1375 (1993).Google Scholar
  67. 67.
    M. Leadbeater, T. Winiecki, D. C. Samuels, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 86, 1410 (2001).Google Scholar
  68. 68.
    C. Nore, M. Abid, and M. E. Brachet, Phys. Rev Lett. 78, 3896 (1997).Google Scholar
  69. 69.
    C. Nore, M. Abid, and M. E. Brachet, Phys. Fluids 9, 2644 (1997).Google Scholar
  70. 70.
    C. F. Barenghi and D. C. Samuels, Phys. Rev. B 60, 1252 (1999).Google Scholar
  71. 71.
    O. C. Idowu, D. Kivotides, C. F. Barenghi, and D. C. Samuels, J. Low Temp. Phys. 120, 269 (2000).Google Scholar
  72. 72.
    D. Kivotides, C. F. Barenghi, and D. C. Samuels, Europhys. Letters 54, 774 (2001).Google Scholar
  73. 73.
    C. J. Gorter and J. H. Mellink, Phys. 15, 285 (1949).Google Scholar
  74. 74.
    K. W. Schwarz, Phys. Rev. Lett. 49, 283 (1982).Google Scholar
  75. 75.
    C. E. Swanson and R. J. Donnelly, J. Low Temp. Phys. 61, 363 (1980).Google Scholar
  76. 76.
    M. Tsubota, T. Araki, and W. F. Vinen, to be published.Google Scholar
  77. 77.
    R. G. K. M. Aarts and A. T. A. M. de Waele, Phys. Rev. B 50, 10069 (1994).Google Scholar
  78. 78.
    Y. S. Choi, M. R. Smith, and S. W. Van Sciver, in Quantized Vortex Dynamics and Superfluid Turbulence, C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (eds.), Springer, Berlin (2001), p. 3.Google Scholar
  79. 79.
    D. Kivotides, J. C. Vassilicos, C. F. Barenghi, M. A. I. Khan, and D. C. Samuels, Phys. Rev. Lett. 87, 275302 (2001).Google Scholar
  80. 80.
    T. Araki, M. Tsubota, and S. K. Nemirovskii, submitted to Phys. Rev. Lett. Google Scholar
  81. 81.
    W. F. Vinen, Phys. Rev. B 61, 1410 (2000).Google Scholar
  82. 82.
    R. T. Wang, C. E. Swanson, and R. J. Donnelly, Phys. Rev. 36, 5240 (1987).Google Scholar
  83. 83.
    S. R. Stalp, J. J. Niemela, W. F. Vinen, and R. J. Donnelly, Phys. Fluids 14 (2002).Google Scholar
  84. 84.
    L. Skrbek, J. J. Niemela, and K. R. Sreenivasan, Phys. Rev. E 64, 067301 (2001).Google Scholar
  85. 85.
    K. W. Schwarz and J. R. Rozen, Phys. Rev. Lett. 66, 1898 (1991).Google Scholar
  86. 86.
    K. W. Schwarz and J. R. Rozen, Phys. Rev. B 44, 7563 (1991).Google Scholar
  87. 87.
    C. F. Barenghi, D. Kivotides, O. C. Idowu, and D. C. Samuels, J. Low Temp. Phys. 121, 377 (2000).Google Scholar
  88. 88.
    M. E. Dodd, P. C. Hendry, N. S. Lawson, P. V. E. McClintock, and C. D. H. Williams, Phys. Rev. Lett. 81, 3703 (1998).Google Scholar
  89. 89.
    M. S. Howe, Acoustics of Fluid Generated Structures, Cambridge University Press (1998).Google Scholar
  90. 90.
    W. F. Vinen, Phys. Rev. B 64, 134520 (2001).Google Scholar
  91. 91.
    B. V. Svistunov, Phys. Rev. B 52, 3647 (1995).Google Scholar
  92. 92.
    D. Kivotides, J. C. Vassilicos, D. C. Samuels, and C. F. Barenghi, Phys. Rev. Lett. 86, 3080 (2001).Google Scholar
  93. 93.
    T. Araki and M. Tsubota, J. Low Temp. Phys. 121, 405 (2000).Google Scholar
  94. 94.
    C. Caroli and J. Matricon, Phys. Kondens. Mater. 3, 380 (1965).Google Scholar
  95. 95.
    N. B. Kopnin, G. E. Volovic, and Ü. Parts, Europhys. Lett. 32, 651 (1995).Google Scholar
  96. 96.
    N. B. Kopnin and M. M. Salomaa, Phys. Rev. B 44, 9667 (1991).Google Scholar
  97. 97.
    C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, J. Low Temp. Phys. 52, 189 (1983).Google Scholar
  98. 98.
    A. Leonard, Ann. Rev. Fluid Mech. 17, 523 (1985).Google Scholar
  99. 99.
    R. J. Donnelly (ed.), High Reynolds Number Flows Using Liquid and Gaseous Helium, Springer-Verlag, Berlin (1991).Google Scholar
  100. 100.
    R. J. Donnelly and K. R. Sreenivasan (eds.), Flow at Ultra-High Reynolds and Rayleigh Numbers, Springer-Verlag, Berlin (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • W. F. Vinen
    • 1
    • 2
  • J. J. Niemela
    • 2
  1. 1.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  2. 2.Cryogenic Helium Turbulence Laboratory, Department of PhysicsUniversity of OregonEugeneU.S.A

Personalised recommendations