Boundary-Layer Meteorology

, Volume 105, Issue 1, pp 177–193 | Cite as

Area-Averaged Sensible Heat Flux and a New Method to Determine Zero-Plane Displacement Length over an Urban Surface using Scintillometry

  • Manabu Kanda
  • Ryo Moriwaki
  • Matthias Roth
  • Tim Oke


Field observations of area-averagedturbulence characteristics were conducted in a densely built-up residential neighbourhood in Tokyo, Japan. In addition to eddy-correlation (EC) sensors a scintillometer was used for the first time in a city. Significant results include: (1) Scintillometer-derived sensible heat fluxes, QH, obtained at a height 3.5 times the building height agree well with those using the EC technique; (2) source areas for the scintillometer fluxes are larger than for the EC sensors, so that at low heights over inhomogeneous terrain scintillometry offers advantages; (3) new similarity relationships for dissipation rates are proposed for urban areas; (4) a new technique that uses simultaneous scintillation measurements at two heights to directly estimate area-averaged zero-plane displacement height, zd, is proposed. zd estimated in this way depends slightly on atmospheric stability (lower zd under more unstable conditions).

Area-averaged turbulence Scintillometer Urban field observation Urban similarity function Zero-plane displacement length 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, E. L.: 1987, 'On the Kolmogorov Constants for the Temperature-Humidity Cospectrum and the Refractive Index Spectrum', J. Atmos. Sci. 44, 2399-2406.Google Scholar
  2. Andreas, E. L.: 1988, 'Atmospheric Stability from Scintillation Measurements', Appl. Optics 27, 2241-2246.Google Scholar
  3. Bottema, M.: 1995, 'Parameterisation of Aerodynamic Roughness Parameters in Relation to Air Pollutant Removal Efficiency of Streets', in H. Power et al. (eds.), Air Pollution Engineering and Management, Computational Mechanics, pp. 235-242.Google Scholar
  4. Bottema, M.: 1997, 'Urban Roughness Modelling in Relation to Pollutant Dispersion', Atmos. Environ. 32, 3059-3075.Google Scholar
  5. Champagne, F. H., Friehe, C. A., Larue, J. C., and Wyngaard, J. C.: 1977, 'Flux Measurements, Flux Estimation Techniques and Fine-Scale Turbulence Measurements in the Unstable Surface Layer over Land', J. Atmos. Sci. 34, 515-530.Google Scholar
  6. De Bruin, H. A. R., Van Den Hurk, J. J. M., and Kohsiek, W.: 1995, 'The ScintillationMethod Tested over a Dry Vineyard Area', Boundary-Layer Meteorol. 76, 25-40.Google Scholar
  7. Ellefsen, R.: 1990-91, 'Mapping and Measuring Buildings in the Canopy Boundary Layer in Ten US Cities', Energy Build. 15-16, 1025-1049.Google Scholar
  8. Green, A. E. and Hayashi, Y.: 1998, 'Use of Scintillometer Technique over a Rice Paddy', J. Agric. Meteorol. 54, 225-234.Google Scholar
  9. Grimmond, C. S. B. and Oke, T. R.: 1999a, 'Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form', J. Appl. Meteorol. 38, 1262-1292.Google Scholar
  10. Grimmond, C. S. B. and Oke, T. R.: 1999b, 'Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model', J. Appl. Meteorol., 922-940.Google Scholar
  11. Grimmond, C. S. B., King, T. S., Roth, M., and Oke, T. R.: 1998, 'Aerodynamic Roughness of Urban Areas Derived from Wind Observations', Boundary-Layer Meteorol. 89, 1-24.Google Scholar
  12. Hill, R. J.: 1992, 'Review of Optical Scintillation Methods of Measuring the Refractive-Index Spectrum, Inner Scale and Surface Fluxes', Wave. Random Media 2, 179-201.Google Scholar
  13. Hill, R. J. and Clifford, S. F.: 1978, 'Modified Spectrum of Atmospheric Temperature Fluctuations and its Application to Optical Propagation', J. Opt. Soc. Am. 68, 892-899.Google Scholar
  14. Hill, R. J., Ochs, G. R., and Wilson, J. J.: 1992, 'Measuring Surface Layer Fluxes of Heat and Momentum Using Optical Scintillation', Boundary-Layer Meteorol. 58, 391-408.Google Scholar
  15. Kanda, M., Takayanagi, Y., Yokoyama, H., and Moriwaki, R.: 1997, 'Field Observation of the Heat Balance in an Urban Area', J. Japan Soc. Hydrol. Water Resour. 10, 329-336 (in Japanese).Google Scholar
  16. Kohsiek, W.: 1982, 'Measuring C 2 T, C 2 Q and C T Q in the Unstable Surface Layer, and Relations to the Vertical Fluxes of Heat and Moisture', Boundary-Layer Meteorol. 24, 89-107.Google Scholar
  17. Lagouarde, J. P., Chehbouni, A., Bonnefond, J. M., Rodriguez, J. C., Kerr, Y. H, Watts, C., and Irvine, M.: 2000, 'Analysis of the Limits of the C 2 T-ProfileMethod for Sensible Heat Flux Measurements in Unstable Conditions', Agric. For. Meteorol. 105, 195-214.Google Scholar
  18. Macdonald, R.W., Griffiths, R. F., and Hall, D. J.: 1998, 'An Improved Method for the Estimation of Surface Roughness of Obstacle Arrays, Atmospheric Environment', Atmos. Environ. 32, 1857-1864.Google Scholar
  19. Moriwaki, R., Suzuki, J., Kanda, M., Mikami, M., and Iwakura, S.: 1999, 'Experiments on the Measurement of SpatiallyMean Heat Flux by Using Scintillometer', Annu. Hydraulic Eng, JSCE 43, 91-96 (in Japanese).Google Scholar
  20. Nieveen, J. P. and Green, A. E.: 1999, "Measuring Sensible Heat Flux Density over Pasture Using the CT2-Profile Method', Boundary-Layer Meteorol. 91, 23-35.Google Scholar
  21. Oke, T. R., Cleugh, H. A., Grimmond, S., Schmid, H. P., and Roth, M.: 1989, 'Evaluation of Spatially-Averaged Fluxes of Heat, Mass and Momentum in the Urban Boundary Layer', Wea. Clim. 9, 14-21.Google Scholar
  22. Raupach, M. R.: 1994, 'Simplified Expressions for Vegetation Roughness Length and Zero-Plane Displacement as a Function of Canopy Height and Area Index', Boundary-Layer Meteorol. 71, 211-216.Google Scholar
  23. Raupach, M. R.: 1995, 'Corrigenda', Boundary-Layer Meteorol. 76, 303-304.Google Scholar
  24. Rotach, M.: 1994, 'Determination of the Zero Plane Displacement in an Urban Environment', Boundary-Layer Meteorol. 67, 187-193.Google Scholar
  25. Roth, M.: 1993, 'Turbulent Transfer Relationships over an Urban Surface. II: Integral Statistics', Quart. J. Roy. Meteorol. Soc. 119, 1105-1120.Google Scholar
  26. Roth, M.: 2000, 'Review of Atmospheric Turbulence over Cities', Quart. J. Roy. Meteorol. Soc. 126, 941-990.Google Scholar
  27. Roth, M. and Oke, T. R.: 1993, 'Turbulent Transfer Relationships over an Urban Surface. I: Spectral Characteristics', Quart. J. Roy. Meteorol. Soc. 119, 1071-1104.Google Scholar
  28. Roth, M. and Oke, T. R.: 1995, 'Relative Efficiencies of Turbulent Transfer of Heat, Mass, and Momentum over a Patchy Urban Surface', J. Atmos. Sci. l52, 1863-1874.Google Scholar
  29. Schmid, H. P.: 1994, 'Source Areas for Scalars and Scalar Fluxes', Boundary-Layer Meteorol. 67, 293-318.Google Scholar
  30. Schmid, H. P.: 1997, 'Experimental Design for FluxMeasurements: Matching Scales of Observations and Fluxes', Agric. For. Meteorol. 87, 179-200.Google Scholar
  31. Thiermann, V.: 1992, 'A Displaced Beam Scintillometer for Line-Averaged Measurements of Surface Layer Turbulence', in 10th Symposium on Turbulence and Diffusion, Portland, OR, American Meteorological Society, Boston, MA, pp. 244-247.Google Scholar
  32. Thiermann, V. and Grassl, H.: 1992, 'The Measurement of Turbulent Surface-Layer Fluxes by Use of Bichromatic Scintillation', Boundary-Layer Meteorol. 58, 367-389.Google Scholar
  33. Thom, A. S.: 1971, 'Momentum Absorption by Vegetation', Quart. J. Roy. Meteorol. Soc. 97, 414-428.Google Scholar
  34. Wesely, M. L.: 1976, 'A Comparison of Two Optical Methods for Measuring Line Averages of Thermal Exchanges above Warm Surfaces', J. Appl. Meteorol. 15, 1177-1188.Google Scholar
  35. Wesely, M. L. and Derzko, Z. I.: 1975, 'Atmospheric Turbulence Parameters from Visual Resolution', Appl. Optics 14, 847-853.Google Scholar
  36. Wyngaard, J. C. and Côté, O. R.: 1971, 'The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 190-201.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Manabu Kanda
    • 1
  • Ryo Moriwaki
    • 1
  • Matthias Roth
    • 2
  • Tim Oke
    • 3
  1. 1.Department of International Development EngineeringTokyo Institute of TechnologyMeguro-ku, TokyoJapan
  2. 2.Department of GeographyNational University of SingaporeSingapore
  3. 3.Department of GeographyUniversity of British ColumbiaVancouverCanada

Personalised recommendations