Quantum Information Processing

, Volume 1, Issue 1–2, pp 107–127

Coins, Quantum Measurements, and Turing's Barrier

  • Cristian S. Calude
  • Boris Pavlov
Article

Abstract

Is there any hope for quantum computing to challenge the Turing barrier, i.e., to solve an undecidable problem, to compute an uncomputable function? According to Feynman's '82 argument, the answer is negative. This paper re-opens the case: we will discuss solutions to a few simple problems which suggest that quantum computing is theoretically capable of computing uncomputable functions. Turing proved that there is no “halting (Turing) machine” capable of distinguishing between halting and non-halting programs (undecidability of the Halting Problem). Halting programs can be recognized by simply running them; the main difficulty is to detect non-halting programs. In this paper a mathematical quantum “device” (with sensitivity ε) is constructed to solve the Halting Problem. The “device” works on a randomly chosen test-vector for T units of time. If the “device” produces a click, then the program halts. If it does not produce a click, then either the program does not halt or the test-vector has been chosen from an undistinguishable set of vectors Fε, T. The last case is not dangerous as our main result proves: the Wiener measure of Fε, Tconstructively tends to zero when T tends to infinity. The “device”, working in time T, appropriately computed, will determine with a pre-established precision whether an arbitrary program halts or not. Building the “halting machine” is mathematically possible. To construct our “device” we use the quadratic form of an iterated map (encoding the whole data in an infinite superposition) acting on randomly chosen vectors viewed as special trajectories of two Markov processes working in two different scales of time. The evolution is described by an unbounded, exponentially growing semigroup; finally a single measurement produces the result.

PACS: 03.67.Lx

heating problem Markov processes Wiener measured 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Frederick Ungar, Publ., NewYork, Vol. 1, 1966) (translated from Russian by M. Nestell).Google Scholar
  2. 2.
    S. Albeverio and P. Kurasov, Singular Perturbations of Differential Operators: Solvable Schrödinger Type Operators (Cambridge University Press, 2000).Google Scholar
  3. 3.
    Ya. I. Belopolskaya. E-mail to B. Pavlov (13 December 2001).Google Scholar
  4. 4.
    Ya. I. Belopolskaya and Yu. L. Dalecky, Stochastic Equations and Differential Geometry, Mathematics and Its Applications (Soviet Series) 30 (Kluwer Academic Publishers, Dordrecht, 1990) (translated from the Russian).Google Scholar
  5. 5.
    P. Benioff, J. Stat. Phys. 22, 563-591 (1980).Google Scholar
  6. 6.
    C. S. Calude. Information and Randomness. An Algorithmic Perspective (Springer Verlag, Berlin, 1994).Google Scholar
  7. 7.
    C. S. Calude and J. L. Casti, Nature 392, 549-551 (1998).Google Scholar
  8. 8.
    C. S. Calude, M. J. Dinneen, and K. Svozil, Complexity 6(1), 35-37 (2000).Google Scholar
  9. 9.
    C. S. Calude and B. Pavlov, CDMTCS Research Report 156, 13 (2001).Google Scholar
  10. 10.
    C. S. Calude and G. Păun. Computing with Cells and Atoms (Taylor and Francis Publishers, London, 2001).Google Scholar
  11. 11.
    J. L. Casti, New Scientist 154/2082, 34 (1997).Google Scholar
  12. 12.
    D. W. Cohen, An Introduction to Hilbert Space and Quantum Logic (Springer Verlag, New York, 1989).Google Scholar
  13. 13.
    R. Compano, Roadmaps for Nanoelectronics, European Commission IST Programme, Future and Emerging Technologies, 2nd edn (Luxembourg, 2000).Google Scholar
  14. 14.
    J. Copeland, J. Philos. XCVI(1), 5-32 (2000).Google Scholar
  15. 15.
    M. Dumitrescu, E-mail to C. S. Calude (3 January 2002).Google Scholar
  16. 16.
    G. Etesi and I. Németi, Non-Turing computations via Malament-Hogarth space-times, Int. J. Theor. Phys. 41, 341-370 (2001). Los Alamos preprint archive http: //arXiv:gr-qc/ 0104023, v1, (9 April 2001).Google Scholar
  17. 17.
    K. De Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro, in Automata Studies, C. E. Shannon and J. McCarthy, eds. (Princeton University Press, Princeton, NJ, 1956), pp. 183-212.Google Scholar
  18. 18.
    D. Deutsch, A. Ekert, and R. Lupacchini, Bull. Symbolic Logic 6, 265-283 (2000).Google Scholar
  19. 19.
    R. P. Feynman, The Character of Physical Law (M.I.T. Press, Cambridge, 1965).Google Scholar
  20. 20.
    R. P. Feynman, Int. J. Theor. Phys. 21 467-488 (1982).Google Scholar
  21. 21.
    M. I. Freidlin, Functional Integration and Partial Differential Equations, Annals of Mathematics Studies, 109 (Princeton University Press, Princeton, NJ, 1985).Google Scholar
  22. 22.
    I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions, Volume 4, Applications of Harmonic Analysis (Academic Press, NewYork, 1964).Google Scholar
  23. 23.
    J. Gruska, Quantum Computing (McGraw-Hill, London, 1999).Google Scholar
  24. 24.
    P. R. Halmos, Measure Theory (D. van Nostrand, Princeton, 1968).Google Scholar
  25. 25.
    J. G. Hey (ed.), Feynman and Computation. Exploring the Limits of Computers (Perseus Books, Reading, Massachusetts, 1999).Google Scholar
  26. 26.
    R. Ionicioiu. E-mail to C. S. Calude (16 January 2002).Google Scholar
  27. 27.
    T. D. Kieu, Quantum algorithm for the Hilbert's tenth problem, Los Alamos preprint archive http://arXiv:quant-ph/0110136, v2 (9 November 2001).Google Scholar
  28. 28.
    A. Lodkin, Personal communication to B. Pavlov (January 2002).Google Scholar
  29. 29.
    A. Mikhailova and B. Pavlov, in Unconventional Models of Computations, UMC'2K I. Antoniou, C. S. Calude, and M. J. Dinneen, eds. (Springer Verlag, London, 2001) pp. 167-186.Google Scholar
  30. 30.
    A. Mikhailova, B. Pavlov, I. Popov, T. Rudakova, and A. Yafyasov. Mathematische Nachrichten 235, 101-128 (2002).Google Scholar
  31. 31.
    B. Pavlov, Russian Math. Surv. 42, 127-168 (1987).Google Scholar
  32. 32.
    D. W. Stroock, Probability Theory. An Analytic View (Cambridge University Press, Cambridge, 1993).Google Scholar
  33. 33.
    K. Svozil, in Unconventional Models of Computation C. S. Calude, J. Casti, and M. J. Dinneen, eds. (Springer, Singapore, 1998) pp. 371-385.Google Scholar
  34. 34.
    A. Yafyasov. Private communication to B. Pavlov (January 2002).Google Scholar
  35. 35.
    C. P. Williams and S. H. Clearwater. Ultimate Zero and One: Computing at the Quantum Frontier (Springer Verlag, Heidelberg, 2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Cristian S. Calude
    • 1
  • Boris Pavlov
    • 2
  1. 1.Department of Computer ScienceThe University of AucklandAucklandNew Zealand
  2. 2.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations