Advertisement

Environmental Biology of Fishes

, Volume 65, Issue 1, pp 1–35 | Cite as

Epigenetic Processes, when Natura Non Facit Saltum Becomes a Myth, and Alternative Ontogenies a Mechanism of Evolution

  • Eugene K. Balon
Article

Abstract

When I started the journal ‘Environmental Biology of Fishes’ more than 25 years ago, it was designed to avoid any prejudices and scientific dogmas, to keep an open mind, and to allow publication of ideas that are irritating to followers of the so-called ‘mainstream’, ideas that few other journals dared to touch (Balon 1976, 1989d). While such articles in the journal were often ignored by the ‘mainstream’ practitioners and the political establishment, none was ever opposed or proven wrong. As in many similar cases before, only time will show if these contributions were valid and of value to the advancement of knowledge.

I have often wondered why it takes so long for some of the universal facts and ideas to be accepted or even to be known. I have come to believe that like with many textbooks some facts and conclusions are copied from one book to the next (as in the case of the origin of the common carp – Balon 1974, 1995a,b) without knowing or admitting that in the meantime new facts require new syntheses and conclusions. Even good scholars resist unknown facts or ideas. It is irritating that one's knowledge is inadequate or that others beat us to be first. I have wondered why wrong ideas persist for so long; but Bateson (1979, p. 206) already explained it to his daughter ‘... yes, your image of evolution is exact. And what Darwin called “natural selection” is the surfacing of the tautology or presupposition that what stays true longer does indeed stay true longer than what stays true not so long’.

After all it was Jean Baptiste ‘Lamarckgrave, the founder of evolutionary theory, miserable, old, and blind, ...’ (Bateson 1972, p. xii) and/or Gottfried Treviranus who presented the truth long before the privileged Charles Darwin, alas in ‘wrong’ languages. Over time, ignoring the truth became fashionable and the question which of the four theories of evolution (Løvtrup 1982) can be attributed to Darwin, if any, irrelevant. ‘It is’ [exclaims Croizat 1977, transl. 1987, p. 137] ‘a gross, very grave mistake to confuse Darwin as a historical figure with Darwin as an exalted figure of the thinking of biology’ (Croizat's italics).

Nearly 30 years ago a BBC TV series and book on evolution glorified Darwin and molecular biology. Calder (1973, p. 9), the author of this book entitled ‘The life game: evolution and the new biology’ felt that Darwin ‘would [merely] need to know about the survival of the quickest, when it came to crossing the street’. But the street was never crossed! Many TV viewers of the recent PBS series ‘Evolution’ were again misled into believing that evolution was discovered by Darwin. Even Gould (2001) in the ‘Introduction’ and the producer Hutton (2001) in the ‘Foreword’ to the companion book of this series (Zimmer 2001) give the ‘Darwinian evolution’ [sic] an exposé it hardly deserves. While such views have been repeatedly proven wrong, most scholars, with the exception of a few scientists, philosophers, and journalists, comfortably assume Darwin's priority in spite of numerous published evidences to the contrary. This myth is then fed to the general public. The following retrospective essay attempts to compile proofs in support of the evolutionary processes other than Darwin's natural selection and the gene-centric ‘new synthesis’, old by now as it is.

epigenesis discontinuity saltation life-history model development self-organization non-equilibrium thermodynamics stability thresholds altricial precocial new processes of evolution Darwinism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Adolph, E.T. 1982. Physiological integrations in action. The Physiologist 25 (Suppl.) 5: 1–67.Google Scholar
  2. Alberch, P. 1980. Ontogenesis and morphological diversification. Amer. Zool. 20: 653–667.Google Scholar
  3. Alderdice, D.F., W.P. Wickett & J.R. Brett. 1958. Some effects of temporary exposure to low dissolved oxygen levels on Pacific salmon eggs. J. Fish. Res. Board Can. 15: 229–249.Google Scholar
  4. Alm, G. 1946. Reason for the occurrence of stunted fish populations. Kungl. Lamtbruksstylersen, Drottningholm 25: 5–146.Google Scholar
  5. Arthur, W. 2000. The origin of animal body plans. A study in evolutionary developmental biology. Cambridge University Press, Cambridge. 339 pp.Google Scholar
  6. Augros, R. & G. Stanciu. 1987. Systematic differentiation. A new evolutionary synthesis. Rivista di Biologia/Biology Forum 80: 531–556.Google Scholar
  7. Augros, R. & G. Stanciu. 1988. The new biology. Discovering the wisdom in nature. Shambala Publications, Boston. 274 pp.Google Scholar
  8. Ayala, F.J. & J.W. Valentine. 1979. Evolving. The theory and processes of organic evolution. The Benjamin/Cummings Publishing Company, Menlo Park. 452 pp.Google Scholar
  9. Balon, E.K. 1959. Die embryonale und larvale Entwicklung der Donauzope (Abramis ballerus subsp.). Biologické práce 5: 1–87.Google Scholar
  10. Balon, E.K. 1974. Domestication of the carp Cyprinus carpio L. Royal Ontario Mus. Life Sci. Misc. Publ., Toronto. 37 pp.Google Scholar
  11. Balon, E.K. 1975a. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board Can. 32: 821–864.Google Scholar
  12. Balon, E.K. 1975b. Terminology of intervals in fish development. J. Fish. Res. Board Can. 32: 1663–1670.Google Scholar
  13. Balon, E.K. 1976. Preface. Env. Biol. Fish. 1: 3–4.Google Scholar
  14. Balon, E.K. 1977a. Early ontogeny of Labeotropheus Ahl, 1927 (Mbuna, Cichlidae, Lake Malawi), with a discussion on advanced protective styles in fish reproduction and development. Env. Biol. Fish. 2: 147–176 (reprinted in Dev. Env. Biol. Fish. 5: 207–236, 1985).Google Scholar
  15. Balon, E.K. 1977b. Fish gluttons: the natural ability of some fishes to become obese when food is in extreme abundance. Hydrobiologia 52: 239–241.Google Scholar
  16. Balon, E.K. 1978. Reproductive guilds and the ultimate structure of fish taxocenes: amended contribution to the discussion presented at the mini-symposium. Env. Biol. Fish. 3: 149–152 (reprinted in Dev. Env. Biol. Fish. 5: 83–86, 1985).Google Scholar
  17. Balon, E.K. 1979a. The theory of saltation and its application in the ontogeny of fishes: steps and thresholds. Env. Biol. Fish. 4: 97–101.Google Scholar
  18. Balon, E.K. 1979b. The juvenilization process in phylogeny and the altricial to precocial forms in the ontogeny of fishes. Env. Biol. Fish. 4: 193–198.Google Scholar
  19. Balon, E.K. (ed.) 1980. Charrs: salmonid fishes of the genus Salvelinus. Perspectives in Vertebrate Science 1, Dr W. Junk Publishers, The Hague. 928 pp. (see especially papers on ontogeny, pp. 485–666, 703–720).Google Scholar
  20. Balon, E.K. 1981a. About processes which cause the evolution of guilds and species. Env. Biol. Fish. 6: 129–138 (reprinted in Dev. Env. Biol. Fish. 5: 73–82, 1985).Google Scholar
  21. Balon, E.K. 1981b. Saltatory processes and altricial to precocial forms in the ontogeny of fishes. Amer. Zool. 21: 573–596.Google Scholar
  22. Balon, E.K. 1982. About the courtship ritual in fishes, but also about a false sense of security given by classification schemes, ‘comprehensive’ reviews and committee decisions. Env. Biol. Fish. 7: 193–197 (reprinted in Dev. Biol. Fish. 5: 87–91, 1985).Google Scholar
  23. Balon, E.K. 1983. Epigenetic mechanisms: reflections on evolutionary processes. Can. J. Fish. Aquat. Sci. 40: 2045–2058.Google Scholar
  24. Balon, E.K. 1984a. Life histories of Arctic charrs: an epigenetic explanation of their invading ability and evolution. pp. 109–141. In: L. Johnson & B. Burns (ed.) Biology of the Arctic Charr: Proceedings of the International Symposium on Arctic Charr, University of Manitoba Press, Winnipeg.Google Scholar
  25. Balon, E.K. 1984b. Patterns in the evolution of reproductive styles in fishes. pp. 35–53. In: G.W. Potts & R.J. Wootton (ed.) Fish Reproduction: Strategies and Tactics, Academic Press, London.Google Scholar
  26. Balon, E.K. 1984c. Reflections on some decisive events in the early life of fishes. Trans. Amer. Fish. Soc. 113: 178–185.Google Scholar
  27. Balon, E.K. (ed.) 1985. Early life histories of fishes: new developmental, ecological and evolutionary perspectives. Developments in Environmental Biology of Fishes 5, Dr W. Junk Publishers, Dordrecht. 280 pp.Google Scholar
  28. Balon, E.K. 1986a. Types of feeding in the ontogeny of fishes and the life-history model. Env. Biol. Fish. 16: 11–24 (reprinted in Dev. Env. Biol. Fish. 7: 11–24).Google Scholar
  29. Balon, E.K. 1986b. Saltatory ontogeny and evolution. Rivista di Biologia/Biology Forum 79: 151–190 (in English and Italian).Google Scholar
  30. Balon, E.K. 1988a. Tao of life: universality of dichotomy in biology. 1. The mystic awareness. Rivista di Biologia/Biology Forum 81: 185–230 (in English and Italian).Google Scholar
  31. Balon, E.K. 1988b. Tao of life: universality of dichotomy in biology. 2. The epigenetic mechanisms. Rivista di Biologia/Biology Forum 81: 339–380 (in English and Italian).Google Scholar
  32. Balon, E.K. 1989a. The confessions of a structuralist. Rivista di Biologia/Biology Forum 82: 135–136.Google Scholar
  33. Balon, E.K. 1989b. The Tao of life: from the dynamic unity of polar opposites to self-organization. pp. 7–40. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.Google Scholar
  34. Balon, E.K. 1989c. The epigenetic mechanisms of bifurcation and alternative life-history styles. pp. 467–501. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Perspectives in Vertebrate Science 6, Kluwer Academic Publishers, Dordrecht.Google Scholar
  35. Balon, E.K. 1989d. Preface to the first index. Env. Biol. Fish. 25: 249–251.Google Scholar
  36. Balon, E.K. 1990. Epigenesis of an epigeneticist: the development of some alternative concepts on the early ontogeny and evolution of fishes. Guelph Ichthyol. Rev. 1: 1–42.Google Scholar
  37. Balon, E.K. 1991. Probable evolution of the coelacanth's reproductive style: lecithotrophy and orally feeding embryos in cichlid fishes and in Latimeria chalumnae. Env. Biol. Fish. 32: 249–265.Google Scholar
  38. Balon, E.K. 1993. Dynamics of biodiversity and mechanisms of change: a plea for balanced attention to form creation and extinction. Biol. Cons. 66: 5–16.Google Scholar
  39. Balon, E.K. 1995a. Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculure 129: 3–48.Google Scholar
  40. Balon, E.K. 1995b. The common carp, Cyprinus carpio: its wild origin, domestication in aquaculture, and selection as colored nishikigoi. Guelph Ichthyology Reviews 3: 1–55.Google Scholar
  41. Balon, E.K. 1999. Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses). Env. Biol. Fish. 56: 17–38.Google Scholar
  42. Balon, E.K. 2002. Alternative ontogenies and evolution: a farewell to gradualism. In: B.K. Hall, R.D. Pearson & G.B. Müller (ed.) Environment, Development and Evolution, MIT Press, Cambridge (in press).Google Scholar
  43. Bateson, G. 1972. Steps to an ecology of mind. Ballantine Books, New York. 541 pp.Google Scholar
  44. Bateson, G. 1979. Mind and nature. A necessary unity. E.P. Dutton, New York. 238 pp.Google Scholar
  45. Baylis, J.R. 1981. The evolution of parental care in fishes, with reference to Darwin's rule of male sexual selection. Env. Biol. Fish. 6: 223–251.Google Scholar
  46. Behe, M.J. 1996. Darwin's black box. Touchstone of Simon & Schuster, New York. 307 pp.Google Scholar
  47. Bell, G. 1980. The costs of reproduction and their consequences. Amer. Nat. 116: 45–76.Google Scholar
  48. Berrill, N.J. 1935. Cell division and differentiation in asexual and sexual development. J. Morph. 57: 353–427.Google Scholar
  49. Blumer, L.S. 1982. A bibliography and categorization of bony fishes exhibiting parental care. Zool. J. Linn. Soc. 76: 1–22.Google Scholar
  50. Bond, C.E. 1996. Biology of fishes, second edition. Saunders College Publishing, Fort Worth. 750 pp.Google Scholar
  51. Bonner, J.T. 1993. Life cycles. Reflections of an evolutionary biologist. Princeton University Press, Princeton. 209 pp.Google Scholar
  52. Brody, S. 1945. Bioenergetics and growth with special reference to the efficiency complex in domestic animals. Van Nostrand Reinhold, New York. 1923 pp.Google Scholar
  53. Bronowski, J. 1970. Newconcepts in the evolution of complexity: stratified stability and unbounded plans. Zygon 5: 18–35.Google Scholar
  54. Bruton, M.N. 1979. The fishes of Lake Sibaya. pp. 162–245. In: B.R. Allanson (ed.) Lake Sibaya, Monographiae Biologicae 36, Dr W. Junk Publishers, The Hague.Google Scholar
  55. Bruton, M.N. 1980. An outline of the ecology of Lake Sibaya, with emphasis on the vertebrate communities. pp. 382–407. In: M.N. Bruton & K.H. Cooper (ed.) Studies on the Ecology of Maputaland, Rhodes University, Grahamstown.Google Scholar
  56. Bruton, M.N. (ed.) 1989. Alternative life-history styles of animals. Perspectives in Vertebrate Sciences 6, Kluwer Academic Publishers, Dordrecht. 617 pp.Google Scholar
  57. Bruton, M.N. 1994. The epigenesis of an epigeneticist: an interview with Eugene Balon. S. Afr. J. Sci. 90: 270–275 + cover.Google Scholar
  58. Calder, N. 1973. The life game. Evolution and the new biology. The Viking Press, New York. 141 pp.Google Scholar
  59. Campbell, C.M. & D.R. Idler. 1976. Hormonal control of vitellogenesis in hypophysectomized winter flounder (Pseudopleuronectes americanus Walbaum). Gen. Comp. Endocrinol. 28: 143–150.Google Scholar
  60. Castle, P.H.J. 1973. A giant notacanthiform leptocephalus from the Chatham Islands, New Zealand. Rec. Dom. Mus. Wellington 8(8): 121–124.Google Scholar
  61. Cohen, J. 1977. Reproduction. Butterworths, London. 356 pp.Google Scholar
  62. Cohen, J. 1979. Maternal constraints in development. pp. 1–28. In: D.R. Newth & M. Balls (ed.) Maternal Effects in Development, Cambridge University Press, Cambridge.Google Scholar
  63. Crawford, S.S. & E.K. Balon. 1994a. Alternative life histories of the genus Lucania: 1. Early ontogeny of L. parva, the rainwater killifish. Env. Biol. Fish. 40: 349–389.Google Scholar
  64. Crawford, S.S. & E.K. Balon. 1994b. Alternative life histories of the genus Lucania: 2. Early ontogeny of L. goodei, the bluefin killifish. Env. Biol. Fish. 41: 331–368.Google Scholar
  65. Crawford, S.S. & E.K. Balon. 1994c. Alternative life histories of the genus Lucania: 3. An ecomorphological explanation of altricial (L. parva) and precocial (L. goodei) species. Env. Biol. Fish. 41: 369–402.Google Scholar
  66. Crawford, S.S. & E.K. Balon. 1996. Cause and effect of parental care in fishes: an epigenetic perspective. pp. 53–107. In: J.S. Rosenblatt & C.T. Snowdon (ed.) Parental Care: Evolution, Mechanisms, and Adaptive Significance, Advances in the Study of Behavior 25, Academic Press, San Diego.Google Scholar
  67. Crawford, S.S., E.K. Balon & K.S. McCann. 1999. A mathematical technique for estimating blastodisc:yolk volume ratios instead of egg sizes. Env. Biol. Fish. 54: 229–234.Google Scholar
  68. Croizat, L. 1977. Carlos Darwin y sus teorias. Biol. Acad. Cianc. Fis. Mat. Nat. (Caracas) 37(113): 15–90 (cited from 1987 English translation of Documents: ‘Leon Croizat on Charles Darwin’ in Rivista di Biologia/Biology Forum 80: 135–148).Google Scholar
  69. Cunningham, J.E.R. & E.K. Balon. 1985. Early ontogeny of Adinia xenica (Pisces, Cyprinodontiformes): 1. The development of embryos in hiding. Env. Biol. Fish. 14: 115–166.Google Scholar
  70. Cunningham, J.E.R. & E.K. Balon. 1986a. Early ontogeny of Adinia xenica (Pisces, Cyprinodontiformes): 2. Implications of embryonic resting interval for larval development. Env. Biol. Fish. 15: 15–45.Google Scholar
  71. Cunningham, J.E.R. & E.K. Balon. 1986b. Early ontogeny of Adinia xenica (Pisces, Cyprinodontiformes): 3. Comparison and evolutionary significance of some patterns in epigenesis of egg-scattering, hiding and bearing cyprinodontiforms. Env. Biol. Fish. 15: 91–105.Google Scholar
  72. Dawkins, R. 1982. The extended phenotype. W.H. Freeman, Oxford. 307 pp.Google Scholar
  73. Dettlaff, T.A. & A.A. Dettlaff. 1961. On relative dimensionless characteristics of the developmental duration in embryology. Arch. Biol. (Liège) 72: 1–16.Google Scholar
  74. Diamond, J.M. 2001. Foreword. pp. vii–xii. In: E. Mayr, What Evolution Is, Basic Books, New York.Google Scholar
  75. Doherty, P.J., D. McB. Williams & P.F. Sale. 1985. The adaptive significance of larval dispersal in coral reef fishes. Env. Biol. Fish. 12: 81–90.Google Scholar
  76. Duncan, K.W. 1985. A critique of the concept of genetic assimilation as a mechanism in the evolution of the terrestrial talitrids (Amphipoda). Can. J. Zool. 63: 2230–2232.Google Scholar
  77. Dziekońska, J. 1956. Studies on embryonic development of fish. 1. Observations on the spawning and embryonic development of bream in the Vistula Lagoon. Polskie Arch. Hydrobiol. 3: 291–305.Google Scholar
  78. Everly, A.W. 2002. Stages of development in the goosefish, Lophius americanus, and comments on the phylogenetic significance of the development of the luring apparatus of Lophiiformes. Env. Biol. Fish. 64: 393–417.Google Scholar
  79. Flegler-Balon, C. 1989. Direct and indirect development in fishes – examples of alternative life-history styles. pp. 71–100. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Kluwer Academic Publishers, Dordrecht.Google Scholar
  80. Fostner, H., S. Hinterleitner, K. Mähr & W. Wieser. 1983. Towards a better definition of “metamorphosis” in Coregonus sp.: biochemical, histological, and physiological data. Can. J. Fish. Aquat. Sci. 40: 1224–1232.Google Scholar
  81. Fryer, G. 1959. The trophic interrelationships and ecology of some littoral communities of Lake Nyasa with special reference to the fishes, and discussion of the evolution of a group of rock frequenting Cichlidae. Proc. Zool. Soc. London 132: 153–281.Google Scholar
  82. Garstang, W. 1929. The origin and evolution of larval forms. Rep. 96th Meeting British Assoc. Adv. Sci. London: 77–98.Google Scholar
  83. Gerbilsky, N.L. 1956. The role of nervous systems in determining the process of change in fish spawning conditions. Trudy Karelskogo fil. Acad. Sci. SSSR 5: 6–12 (in Russian).Google Scholar
  84. Gehringer, J.W. 1959. Early development and metamorphosis of the tenpounder Elops saurus Linnaeus. U.S. Fish. Bull. 155: 617–647.Google Scholar
  85. Geist, V. 1971. Mountain sheep. A study in behavior and evolution. University of Chicago Press, Chicago. 383 pp.Google Scholar
  86. Geist, V. 1978. Life strategies, human evolution, environmental design. Toward a biological theory of health. Springer-Verlag, New York. 495 pp.Google Scholar
  87. Geist, V. 1981. Neanderthal the hunter. Natural History 90: 26–36.Google Scholar
  88. Gell-Mann, M. 1994. The quark and the jaguar. Adventures in the simple and the complex. W.H. Freeman and Co., New York. 392 pp.Google Scholar
  89. Gilbert, S.F. 1991. Induction and the origins of developmental genetics. pp. 181–206. In: S.F. Gilbert (ed.) A Conceptual History of Modern Embryology, The Johns Hopkins University Press, Baltimore.Google Scholar
  90. Gold, J.R., W.J. Karel & M.R. Strand. 1980. Chromosome formulae of North American fishes. Prog. Fish-Cult. 42: 10–23.Google Scholar
  91. Goldschmidt, R.B. 1940. The material basis of evolution. Yale University Press, New Haven. 436 pp.Google Scholar
  92. Goodman, M., M.M. Miyamoto & J. Czelusniak. 1987. Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. pp. 141–175. In: C. Patterson (ed.) Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge.Google Scholar
  93. Goodwin, B.C. & L.E.H. Trainor. 1983. The ontogeny and phylogeny of the pentadactyl limb. pp. 75–98. In: B.C. Goodwin, N. Holder & C.C. Wylie (ed.) Development and Evolution, Cambridge Univesity Press, London.Google Scholar
  94. Gorodilov, Y.N. 1996. Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Env. Biol. Fish. 47: 109–127.Google Scholar
  95. Goto, A. 1980. Geographical distribution and variation of two types of Cottus nozawae in Hokkaido, and morphological characteristics of C. amblystomopsis from Sakhalin. Japan J. Ichthyol. 27: 97–105.Google Scholar
  96. Goto, A. 1982. Reproductive behavior of a river sculpin, Cottus nozawae Snyder. Japan J. Ichthyol. 28: 453–457.Google Scholar
  97. Goto, A. & K. Maekawa (ed.) 1989. Reproductive behavior in fishes: styles and strategies. Tokai University Press, Tokyo. 201 + 30 pp. (in Japanese).Google Scholar
  98. Gottlieb, G., 1992. Individual development and evolution. Oxford University Press, New York. 231 pp.Google Scholar
  99. Gould, S.J. 1977. Ontogeny and phylogeny. The Belknap Press of Harvard University Press, Cambridge. 501 pp.Google Scholar
  100. Gould, S.J. 1980. Is a new general theory of evolution emerging? Paleobiology 6: 119–130.Google Scholar
  101. Gould, S.J. 1982. The meaning of punctuated equilibrium and its role in validating a hierarchical approach to marcroevolution. pp. 83–104. In: R. Milkman (ed.) Perspectives on Evolution, Sinauer Associates, Sunderland.Google Scholar
  102. Gould, S.J. 1985. The flamingo's smile. Nat. Hist. 3: 6–19.Google Scholar
  103. Gould, S.J. 2001. Introduction. pp. ix–xiv. In: C. Zimmer, Evolution, The Triumph of an Idea, HarperCollins Publishers, New York.Google Scholar
  104. Gould, S.J. & E.S. Vrba. 1982. Exaptation – a missing term in the science of form. Paleobiology 8: 4–15.Google Scholar
  105. Greenwood, P.H. 1989. Ontogeny and evolution: saltatory or otherwise? pp. 245–259. In: M.N. Bruton (ed.) Alternative Life-History Styles of Animals, Kluwer Academic Publishers, Dordrecht.Google Scholar
  106. Greenwood, P.H. 1990. The freshwater fishes of Europe, vol. 1, part 2: General introduction to fishes, Acipenseriformes. J. Nat. Hist. 24: 531–532.Google Scholar
  107. Grene, M. (ed.) 1983. Dimensions of Darwinism. Themes and counterthemes in twentieth-century evolutionary theory. Cambridge University Press, Cambridge. 336 pp.Google Scholar
  108. Gulidov, M.V. & K.S. Popova. 1982. Egg survival, hatching dynamics, and morphological peculiarities of prolarva of kutum, Rutilus frisii kutum (Cyprinidae), in relation to temperature. J. Ichthyol. 22: 81–89.Google Scholar
  109. Gutmann, W.F. 1989. Die Evolution hydraulischer Konstructionen: Organismische Wandlung statt altdarwinistischer Anpassung. Senckenberg-Buch 65, Verlag Waldemar Kramer, Frankfurt am Main. 201 pp.Google Scholar
  110. Haigh, E.H. 1990. An analysis of the early ontogeny of Aplocheilichthys johnstoni (Günter, 1893) from a life history perspective. M.Sc. Thesis, Rhodes University, Grahamstown. 108 pp.Google Scholar
  111. Hall, B.K. 1984. Developmental processes underlying heterochrony as an evolutionary mechanism. Can. J. Zool. 62: 1–7.Google Scholar
  112. Hall, B.K. 1992. Evolutionary developmental biology. Chapman & Hall, London. 275 pp.Google Scholar
  113. Hall, B.K. 2001. Organic selection: proximate environmental effects on the evolution of morphology and behaviour. Biology and Philosophy 16: 215–237.Google Scholar
  114. Halstead, L.B. 1986. Kinji Imanishi – the viewfrom the mountain top: a critique of Imanishi's theory of evolution. Tsakiji Shokan, Tokyo (in Japanese, read as manuscript version in English).Google Scholar
  115. Hamdorf, K. 1961. Die Beeinflussung der Embryonal-und Larvalentwicklung der Regenbogenforelle (Salmo irideus Gibb.) durch die Umweltfaktoren O2-Partialdruck und Temperatur. Z. vergl. Physiol. 44: 523–549.Google Scholar
  116. Hecht, M.K. (ed.) 1989. Evolutionary biology at the crossroads. Queens College Press, Flushing. 179 pp.Google Scholar
  117. Hedgpeth, J.W. (ed.) 1978. The outer shores, Part 1, Ed Ricketts and John Steinbeck explore the Pacific coast. Mad River Press, Eureka. 128 pp.Google Scholar
  118. Helvik, J. V. 1991. Biology of hatching: mechanism and control of hatching in eggs of halibut (Hippoglossus hippoglossus). Dr. Scient. Thesis, University of Bergen, Bergen. 43 pp. + separately paginated communications.Google Scholar
  119. Helvik, J.V. & B.T. Walther. 1992. Photo-regulation of the hatching process of halibut (Hippoglossus hippoglossus) eggs. J. Exp. Zool. 263: 204–209.Google Scholar
  120. Helvik, J.V. & B.T. Walther. 1993a. Environmental parameters affecting induction of hatching in halibut (Hippoglossus hippoglossus) embryos. Marine Biology 116: 39–45.Google Scholar
  121. Helvik, J.V. & B.T. Walther. 1993b. Development of hatchability in halibut (Hippoglossus hippoglossus) embryos. Int. J. Dev. Biol. 37: 487–490.Google Scholar
  122. Hennig, W. 1960. Phylogenetic systematics. University of Illinois Press, Urbana. 263 pp.Google Scholar
  123. Hitching, F. 1982. The neck of the giraffe or where Darwin went wrong. Pan Books, London. 288 pp.Google Scholar
  124. Ho, M.-W. 1984. Where does biological form come from? Rivista di Biologia 77: 147–179.Google Scholar
  125. Ho, M.-W. 1987. A structuralism of process. Rivista di Biologia/Biology Forum 80: 183–184.Google Scholar
  126. Ho, M.-W. 1988. How rational can rational morphology be? A post-Darwinian rational taxonomy based on a structuralism of process. Rivista di Biologia/Biology Forum 81: 11–55.Google Scholar
  127. Ho, M.-W. & P.T. Saunders. 1979. Beyond neo-Darwinism – an epigenetic approach to evolution. J. Theor. Biol. 78: 572–591.Google Scholar
  128. Ho, M.-W. & P.T. Saunders. 1982. Adaptation and natural selection: mechanism and teleology. pp. 85–102. In: S. Rose (ed.) Towards a Liberatory Biology, Allison & Busby, London.Google Scholar
  129. Ho, M.-W. & P.T. Saunders (ed.) 1984. Beyond neo-Darwinism: an introduction to the new evolutionary paradigm. Academic Press, London. 376 pp.Google Scholar
  130. Holčík, J. (ed.) 1986. The freshwater fishes of Europe, vol. 1, part 1. AULA-Verlag, Wiesbaden. 313 pp.Google Scholar
  131. Holčík, J. 1998. Ichtyológia (Ichthyology). Príroda, Bratislava. 314 pp.Google Scholar
  132. Holčík, J., P. Bănărescu & D. Evans. 1989. General introduction to fishes. pp. 18–147. In: J. Holčík (ed.) The Freshwater Fishes of Europe, vol. 1, part 2, AULA-Verlag, Wiesbaden.Google Scholar
  133. Holden, K.K. & M.N. Bruton. 1992. A life-history approach to the early ontogeny of the Mozambique tilapia Oreochromis mossambicus (Pisces, Cichlidae). S. Afr. J. Zool. 27: 173–191.Google Scholar
  134. Holden, K.K. & M.N. Bruton. 1994. The early ontogeny of the southern mouthbrooder, Pseudocrenilabrus philander (Pisces, Cichlidae). Env. Biol. Fish. 41: 311–329.Google Scholar
  135. Holm, E. 1985. The evolution of generalist and specialist species. pp. 87–93. In: E.S. Vrba (ed.) Species and Speciation, Transvaal Museum Monograph 4, Pretoria.Google Scholar
  136. Hubbard, R. 1982. The theory and practice of genetic reductionism – from Mendel's laws to genetic engineering. pp. 62–78. In: S. Rose (ed.) Towards a Liberatory Biology, Allison and Busby, London.Google Scholar
  137. Hutton, R. 2001. Foreword. pp. xv–xvii. In: C. Zimmer, Evolution, The Triumph of an Idea, HarperCollins Publishers, New York.Google Scholar
  138. Imanishi, K. 1984. A proposal for shizengaku: the conclusion to my study of evolutionary theory. J. Social Biol. Struct. 7: 357–368.Google Scholar
  139. Jägersten, G. 1972. Evolution of the metazoan life cycle. Academic Press, London. 276 pp.Google Scholar
  140. Jantsch, E. 1976. Introduction and summary. pp. 1–8. In: E. Jantsch & C.H. Waddington (ed.) Evolution and Consciousness, Human Systems in Transition, Addison-Wesley Publ., Reading.Google Scholar
  141. Jantsch, E. 1980. The self-organizing universe. Scientific and human implications of the emerging paradigm of evolution. Pergamon Press, Oxford. 343 pp.Google Scholar
  142. Jones, G.P., M.J. Milicich, M.J. Emslie & C. Lunow. 1999. Self-recruitment in a coral reef fish population. Nature 402: 802–804.Google Scholar
  143. Kamler, E. 1992. Early life history of fish. Anenergetics approach. Chapman & Hall, London. 267 pp.Google Scholar
  144. Kauffman, S.A. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22: 437–467.Google Scholar
  145. Kauffman, S.A. 1974. The large scale structure and dynamics of gene control circuits: an ensemble approach. J. Theor. Biol. 44: 167–190.Google Scholar
  146. Kauffman, S.A. 1984. Self-organization, selective adaptation, and its limits: a new pattern of inference in evolution and development. pp. 169–207. In: D.J. Depew & B.H. Weber (ed.) Evolution at a Crossroad: The New Biology and the New Philosophy of Science, The MIT Press, Cambridge.Google Scholar
  147. Klemetsen, A., P.E. Grotnes, H. Holthe & K. Kristoffersen. 1985. Bear Island charr. Rep. Inst. Freshw. Res. Drottningholm 62: 98–119.Google Scholar
  148. Kölliker, R. A. von. 1864. Über die Darwinische Schöpfungstheorie. Zeitschrift für wissenschaftliche Zoologie 14: 74–86.Google Scholar
  149. Koshelev, B.V. 1978. Studies of the ecomorphological principles of fish development in relation to environmental change. pp. 3–9. In: B.V. Koshelev (ed.) Ecomorphological and Ecophysiological Studies of Fish Development, Nauka Press, Moscow (in Russian).Google Scholar
  150. Koshelev, B.V. 1981. Ecomorphological investigations of the reproduction and development of fishes. pp. 53–58. In: M. Peňáz & M. Prokeš (ed.) Topical Problems in Ichthyology, Czech. Acad. Sci., Brno.Google Scholar
  151. Kováč, V. 1992. Early development of the yellow pope, Gymnocephalus schraetser. Folia Zoologica 41: 372–385.Google Scholar
  152. Kováč, V. 1993a. Early development of ruff, Gymnocephalus cernuus. Folia Zoologica 42: 269–280.Google Scholar
  153. Kováč, V. 1993b. Early development of the Balon's ruff, Gymnocephalus baloni Holčík & Hensel 1974. Folia Zoologica 42: 351–362.Google Scholar
  154. Kováč, V. 2000. Early development of Zingel streber. J. Fish Biol. 57: 1381–1403.Google Scholar
  155. Kryzhanovsky, S.G., N.N. Disler & E.N. Smirnova. 1953. Ecomorphological principles of development in percids. Trudy Inst. Morph. Zhivotnych Severcova 10: 3–138 (in Russian).Google Scholar
  156. Lampl, M., J.D. Veldhuis & M.L. Johnson. 1992. Saltation and stasis: a model of human growth. Science 258: 801–803.Google Scholar
  157. Laszlo, E. 1987. Evolution. The grand synthesis. Shambhala, Boston. 211 pp.Google Scholar
  158. Leis, J.M. 2002. Pacific coral-reef fishes: the implications of behaviour and ecology of larvae for biodiversity and conservation, and a reassessment of the open population paradigm. Env. Biol. Fish. (in press).Google Scholar
  159. Liem, K.F. & L.S. Kaufman. 1984. Intraspecific macroevolution: functional biology of the polymorphic cichlid species Cichlasoma minckleyi. pp. 203–215. In: A.A. Echelle & I. Kornfield (ed.) Evolution of Fish Species Flocks, University of Maine Press, Orono.Google Scholar
  160. Liem, K.F. & D.J. Stewart. 1976. Evolution of the scale-eating cichlid fishes of Lake Tanganyika: a generic revision with a description of a new species. Bull. Mus. Comp. Zool. Harvard Univesity 147: 319–350.Google Scholar
  161. Løvtrup, S. 1974. Epigenetics – a treatise on theoretical biology. John Wiley & Sons, London. 548 pp.Google Scholar
  162. Løvtrup, S. 1982. The four theories of evolution. Rivista di Biologia 75: 53–66, 231–272, 385–409.Google Scholar
  163. Løvtrup, S. 1984. Ontogeny and phylogeny. pp. 159–190. In: M.-W. Ho & P.T. Saunders (ed.) Beyond Neo-Darwinism, an Introduction to the New Evolutionary Paradigm, Academic Press, London.Google Scholar
  164. Løvtrup, S. 1987. Darwinism: the refutation of a myth. Croom Helm, London. 469 pp.Google Scholar
  165. Lowe-McConnell, R.H. 1982. Tilapias in fish communities. pp. 83–113. In: R.S.V. Pullin & R.H. Lowe-McConnell (ed.) The Biology and Culture of Tilapias, ICLARM Conference Proceedings 7, Manila.Google Scholar
  166. Lynn, W.G. 1942. The embryology of Eleutherodactylus nubicola, an anuran which has no tadpole stage. Carnegie Inst. Wash. Contr. Embryology 30: 27–62.Google Scholar
  167. Maddox, J. 1986. The reality of the quantum jump. Nature 323: 577.Google Scholar
  168. Maddox, J. 1998. What remains to be discovered. The Free Press, New York. 434 pp.Google Scholar
  169. Makeyeva, A.P. 1988. Review of ‘Early life histories of fishes: new developmental, ecological and evolutionary perspectives (by E.K. Balon)'. Voprosy Ichtiologii 28: 697–700 (in Russian).Google Scholar
  170. Makeyeva, A.P. & D.S. Pavlov. 1998. Freshwater ichthyoplankton of Russia (an atlas). Moscow University Press, Moscow. 215 pp. (in Russian).Google Scholar
  171. Makeyeva, A.P. & N.G. Yemelyanova. 1989. Periodization of oogenesis in cyprinid fishes. Voprosy Ichtiologii 29: 931–943 (in Russian).Google Scholar
  172. Mann, C. 1991. Lynn Margulis: science's unruly earth mother. Science 252: 378–381.Google Scholar
  173. Margulis, L. 1981. Symbiosis in cell evolution. Life and its environment on the early Earth. W.H. Freeman, San Francisco. 419 pp.Google Scholar
  174. Margulis, L. 1990. Kingdom Animalia: the zoological malaise from a microbial perspective. Amer. Zool. 30: 861–875.Google Scholar
  175. Margulis, L. 1991. Biologists can't define life. pp. 236–238. In: C. Barlow (ed.) From Gaia to Selfish Genes, Selected Writtings in the Life Sciences, The MIT Press, Cambridge.Google Scholar
  176. Matsuda, R. 1982. The evolutionary process in talitrid amphipods and salamanders in changing environments, with a discussion of ‘genetic assimilation’ and some other evolutionary concepts. Can. J. Zool. 60: 733–749.Google Scholar
  177. Matsuda, R. 1987. Animal evolution in changing environments with special reference to abnormal metamorphosis. John Wiley and Sons, New York. 355 pp.Google Scholar
  178. Maturana, H.R. & F.J. Varela. 1988. The tree of knowledge. The biological roots of human understanding. Shambhala, Boston. 263 pp.Google Scholar
  179. Matveyev, B.S. 1955. Teaching on the “stepwise (stagewise)” ontogeny in animals. pp. 111–122. In: Problems of Present Embryology, Proc. Embryol. Conf., Leningrad (in Russian).Google Scholar
  180. Mayden, R.L. & R.M. Wood. 1995. Systematics, species concepts, and the evolutionarily significant unit in biodiversity and conservation biology. Amer. Fish. Soc. Symp. 17: 58–113.Google Scholar
  181. Maynard Smith, J. 1983. Evolution and development. pp. 33–45. In: B.C. Goodwin, N. Holder & C.C. Wylie (ed.) Development and Evolution, Cambridge University Press, London.Google Scholar
  182. Mayr, E. 1978. Evolution. Scientific American 239(3): 47–55.Google Scholar
  183. Mayr, E. 1982. The growth of biological thought. Diversity, evolution, and inheritance. The Belknap Press of Harvard University Press, Cambridge. 974 pp.Google Scholar
  184. Mayr, E. 1988. Toward a newphilosophy of biology. Observations of an evolutionist. The Belknap Press of Harvard University Press, Cambridge. 564 pp.Google Scholar
  185. Mayr, E. 2001. What evolution is. Basic Books, NewYork. 318 pp.Google Scholar
  186. Medvedev, Z.A. 1969. The rise and fall of T.D. Lysenko. Columbia University Press, New York. 284 pp.Google Scholar
  187. Metz, J.A.J., T.J. de Jong & P.G.L. Klinkhamer. 1983. What are the advantages of dispersing: a paper by Kuno explained and extended. Oecologia 57: 166–169.Google Scholar
  188. Milkman, R. (ed.). 1982. Perspectives on evolution. Sinauer Associates, Sunderland. 241 pp.Google Scholar
  189. Miller, P.J. 1979. Adaptiveness and implications of small size in teleosts. Symp. Zool. Soc. London 44: 263–306.Google Scholar
  190. Milton, R. 1997. Shattering the myths of Darwinism, second edition. Park Street Press, Rochester. 308 pp.Google Scholar
  191. Moser, H.G. 1981. Morphological and functional aspects of marine fish larvae. pp. 89–131. In: R. Lasker (ed.) Marine Fish Larvae, Washington Sea Grant Program, Seattle.Google Scholar
  192. Moyle, P.B. & J.J. Cech, Jr. 1996. Fishes. An introduction to ichthyology, third edition. Prentice Hall, Upper Saddle River. 590 pp.Google Scholar
  193. Muntyan, S.P. 1975. Hatching of walleye embryos at various incubation temperatures. pp. 66–89. In: N.N. Disler (ed.) Development of Fishes Under Various Natural and Experimental Conditions, Nauka Press, Moscow (in Russian).Google Scholar
  194. Nelson, J.S. & P.J.B. Hart (ed.) 1999. Species concept in fish biology. Reviews in Fish Biology and Fisheries 9(4): 275–386.Google Scholar
  195. Ng, T.B. & D.R. Idler. 1978. 'Big’ and ‘little’ forms of plaice vitellogenic and maturational hormones. Gen. Com. Endocrinol. 34: 408–420.Google Scholar
  196. Nice, M.M. 1962. Development of behavior in precocial birds. Trans. Linn. Soc. New York 8. 211 pp.Google Scholar
  197. Nicolis, G. & I. Prigogine. 1977. Self-organization in nonequilibrium systems. Wiley, New York. 491 pp.Google Scholar
  198. Norris, D.O. 1983. Evolution of endocrine regulation of metamorphosis in lower vertebrates. Amer. Zool. 23: 709–716.Google Scholar
  199. O'Connor, R.J. 1984. The growth and development of birds. John Wiley & Sons, Chichester. 326 pp.Google Scholar
  200. Oliva, O., L. Hanel & V. Šafranek. 1989. On the systematics of the perch Perca fluviatilis (Pisces, Perciformes). Věst. Čs. Spol. Zool. 53: 214–225.Google Scholar
  201. Oster, G. & P. Alberch. 1982. Evolution and bifurcation of developmental programs. Evolution 36: 444–459.Google Scholar
  202. Patterson, C. 1987. Introduction. pp. 1–22. In: C. Patterson (ed.) Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge.Google Scholar
  203. Pearson, R.D. 1985. Duncan's critique of Matsuda. Can. J. Zool. 63: 2982–2983.Google Scholar
  204. Peňáz, M. 1981. Ecomorphological principles and saltation in the early ontogeny of salmonid fishes. pp. 95–100. In: M. Peňáz & M. Prokeš (ed.) Topical Problems in Ichthyology, Czech. Acad. Sci., Brno.Google Scholar
  205. Peňáz, M. 1983. Ecomorphological laws and saltation in the early ontogeny of Salmonoidei. Folia Zoologica 32: 365–373.Google Scholar
  206. Pirozynski, K.A. & D.W. Malloch. 1975. The origin of land plants: a matter of mycotrophism. Biosystems 6: 153–164.Google Scholar
  207. Poynton, J.C. 1982. On species pairs among southern African amphibians. S. Afr. J. Zool. 17: 67–74.Google Scholar
  208. Prigogine, I. 1961. Introduction to thermodynamics of irreversible processes. Wiley-Interscience, New York. 119 pp.Google Scholar
  209. Prigogine, I. 1980. From being to becoming. Time and complexity in the physical sciences. W.H. Freeman, San Francisco. 272 pp.Google Scholar
  210. Raff, R.A. & T.C. Kaufman. 1983. Embryos, genes, and evolution. The developmental-genetic basis of evolutionary change. Macmillan Publishing Co., New York. 395 pp.Google Scholar
  211. Reid, R.G.B. 1985. Evolutionary theory: the unfinished synthesis. Croom Helm, London. 405 pp.Google Scholar
  212. Reif, W.-E. 1983. Evolutionary theory in German paleontology. pp. 173–203. In: M. Grene (ed.) Dimensions of Darwinism, Cambridge University Press, Cambridge.Google Scholar
  213. Ribbink, A.J., B.A. Marsh, A.C. Marsh, A.C. Ribbink & B.J. Sharp. 1983. A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. S. Afr. J. Zool. 18: 149–310.Google Scholar
  214. Richards, R.J. 1993. Ideology and the history of science. Biology and Philosophy 8: 103–108.Google Scholar
  215. Ricklefs, R.E. 1979. Adaptation, constraint, and compromise in avian postnatal development. Biol. Rev. 54: 269–290.Google Scholar
  216. Ridley, M. 1993. Evolution. Blackwell Scientific Publications, Oxford. 670 pp.Google Scholar
  217. Riedl, R. 1975. Die Ordnung des Lebenden: Systembedingungen der Evolution. Paul Parey, Hamburg. 372 pp.Google Scholar
  218. Riedl, R. 1983. The role of morphology in the theory of evolution. pp. 205–238. In: M. Grene (ed.) Dimensions of Darwinism, Themes and Counterthemes in Twentieth-Century Evolutionary Theory, Cambridge University Press, Cambridge.Google Scholar
  219. Riedl, R. 1988. The system theory of evolution. pp. 4–29. In: F. Schmidt (ed.) Neodarwinistische oder kybernetische Evolution? Universitätsdruckerei, Heidelberg.Google Scholar
  220. Romero, A. 2001. Scientists prefer them blind: the history of hypogean fish research. Env. Biol. Fish. 62: 43–71.Google Scholar
  221. Ruse, M. 1982. Darwinism defended. A guide to the evolution controversies. Addison-Wesley Publishing Co., Reading. 356 pp.Google Scholar
  222. Sapp, J. 1987. Beyond the gene. Cytoplasmic inheritance and the struggle for authority in genetics. Oxford University Press, New York. 266 pp.Google Scholar
  223. Saunders, P.T. 1984. Development and evolution. pp. 243–263. In: M.-W. Ho & P.T. Saunders (ed.) Beyond neo-Darwinism: An Introduction to the New Evolutionary Paradigm, Academic Press, London.Google Scholar
  224. Sazima, I. 1983. Scale-eating in characoids and other fishes. Env. Biol. Fish. 9: 87–101.Google Scholar
  225. Schluter, D. 1996. Ecological speciation in postglacial fishes. Proc. R. Soc. London 351B: 807–814.Google Scholar
  226. Schmidt, F. 1985. Grundlagen der kybernetischen Evolution. Eine neue Evolutions-theorie. Goecke & Evers, Krefeld. 500 pp.Google Scholar
  227. Schmidt, F. (ed.) 1988. Neodarwinistische oder kybernetische Evolution? Bericht über ein Internationales Symposium vom 15.–17.7. 1987 in Heidelberg, 2. Auflage. Universitätsdruckerei, Heidelberg. 274 pp.Google Scholar
  228. Scudo, F.M. 1997. Darwin & Co. on forms and genes. pp. 499–502. In: G. Sermonti & E. Ferrario (ed.) The Problem of Form, Morphogenesis in Nature and in Thought, Italian Section of the Osaka Group 4th Meeting, Milan, 14–15 June 1997, Rivista di Biologia/Biology Forum 90.Google Scholar
  229. Sermonti, G. 1988. L'I Ching e il codice genetico. Il Tao della biologia (I Ching and the genetic code. The Tao of biology). Abstracta 3(31): 66–73.Google Scholar
  230. Sermonti, G. 1999. Reminiscing through Rivista di Biologia (1919–1999). Rivista di Biologia/Biology Forum 92: 369–372.Google Scholar
  231. Shardo, J.D. 1995. Comparative embryology of telostean fishes. I. Development and staging of the American shad, Alosa sapidissima (Wilson, 1811). J. Morph. 225: 125–167.Google Scholar
  232. Shilov, I.A. 1965. On the stages of the individual development of birds. Zool. Zh. 44: 1825–1834 (in Russian).Google Scholar
  233. Skúlason, S. & T.B. Smith. 1995. Resource polymorphisms in vertebrates. Trends Ecol. Evol. 10: 366–370.Google Scholar
  234. Skúlason, S., D.L.G. Noakes & S. Snorrason. 1989. Ontogeny of trophic morphs in four sympatric morphs of Arctic charr Salvelinus alpinus in Thingvallavatn, Iceland. Biol. J. Linn. Soc. 38: 281–301.Google Scholar
  235. Skúlason, S., S. Snorrason, D. Ota & D.L.G. Noakes. 1993. Genetically based differences in the foraging behaviour among sympatric morphs of Arctic charr Salvelinus alpinus (Pisces: Salmonidae). Anim. Behav. 45: 1179–1192.Google Scholar
  236. Smirnov, A.I. 1964. Spawning step in development and its characteristics. Dokl. Acad. Sci. SSSR 159: 431–433 (in Russian).Google Scholar
  237. Smirnov, A.I. 1965. Spawning step and its characteristics in the development of fishes. pp. 147–154. In: Theoretical Bases of Fisheries, Nauka Press, Moscow (in Russian).Google Scholar
  238. Soin, S.G. 1968. Adaptational features in fish ontogeny. Moscow University Press, Moscow. 90 pp. (in Russian, translated into English by the Israel Program for Scientific Translations, Published for the U.S. Department of Commerce and the National Science Foundation, Washington, D.C. 1971, 72 pp.).Google Scholar
  239. Soin, S.G. 1969. Adaptational features in the development of fishes. Probl. Ichthyol. 9: 298–299.Google Scholar
  240. Steele, E.J., R.M. Gorczynski & J.W. Pollard. 1984. The somatic selection of acquired characters. pp. 217–237. In: J.W. Pollard (ed.) Evolutionary Theory: Path Into the Future, John Willey & Sons, Chichester.Google Scholar
  241. Steinbeck, J. 1960. The log from the Sea of Cortez. Pan Books, London. 320 pp.Google Scholar
  242. Steinbeck, J. 1969. Journal of a novel. The east of Eden letters. Viking Press, New York. 182 pp.Google Scholar
  243. Stobutzki, I.C. 2001. Marine reserves and the complexity of larval dispersal. Reviews in Fish Biology and Fisheries 10: 515–518.Google Scholar
  244. Stobutzki, I.C. & D.R. Bellwood. 1994. An analysis of the sustained swimming abilities of pre-and post-settlement coral reef fishes. J. Exp. Mar. Biol. Ecol. 175: 275–286.Google Scholar
  245. Strathmann, R.R. 1993. Review of ‘Larvae and evolution: toward a new zoology', by D.I. Williamson. Quart. Rev. Biol. 68: 280–282.Google Scholar
  246. Svärdson, G. 1958. Speciation in freshwater fish as illustrated by Coregonus. Proc. 15th Intern. Conf. Zool., Sect. 2: 137–141.Google Scholar
  247. Svärdson, G. 1961. Young sibling fish species in northwestern Europe. pp. 498–513. In: W.F. Blair (ed.) Vertebrate Speciation, University of Texas Press, Austin.Google Scholar
  248. Svärdson, G. 1970. Significance of introgression in coregonid evolution. pp. 33–59. In: C.C. Lindsey & C.S. Woods (ed.) Biology of Coregonid Fishes, University of Manitoba Press, Winnipeg.Google Scholar
  249. Svetovidov, A.N. & Y.A. Dorofeyeva. 1963. Systematic relationships, origin and distribution history of Eurasian and North American perches and walleyes (genera Perca, Lucioperca and Stizostedion). Voprosy Ichtiologii 3: 625–651 (in Russian).Google Scholar
  250. Taylor, E.B. 1999. Species pairs of north temperate freshwater fishes: evolution, taxonomy, and conservation. Reviews in Fish Biology and Fisheries 9: 299–324.Google Scholar
  251. Thom, R. 1989. Structural stability and morphogenesis: an outline of a general theory of models. Addison-Wesley Publishing Co., Redwood City. 348 pp.Google Scholar
  252. Townsend, D.S. & M.M. Stewart. 1985. Direct development in Eleutherodactylus coqui (Anura: Leptodactylidae): a staging table. Copeia 1985: 423–436.Google Scholar
  253. Updike, J. 1987. Roger's version. Ballantine Books, New York. 328 pp.Google Scholar
  254. Vagelli, A. 1999. The reproductive biology and early ontogeny of the mouthbrooding Banggai cardinalfish, Pterapogon kaudermi (Perciformes, Apogonidae). Env. Biol. Fish. 56: 79–92.Google Scholar
  255. Vagelli, A.A. & M.V. Erdmann. 2002. First comprehensive ecological survey of the Banggai cardinalfish, Pterapogon kauderni. Env. Biol. Fish. 63: 1–8.Google Scholar
  256. Van Bohemen, J.G.D., H.J. Lambert, T. Goos & P.G.W. Van Oordt. 1982. Estrone and estradiol participation during exogenous vitellogenesis in the female rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol. 46: 81–92.Google Scholar
  257. Van Tienhoven, A. 1983. Reproductive physiology of vertebrates. Cornell University Press, Ithaca. 491 pp.Google Scholar
  258. Van Valen, L. 1976. Ecological species, multispecies, and oaks. Taxon 25: 233–259.Google Scholar
  259. Vasnetsov, V.V. 1953. Etaps in the development of bony fishes. pp. 207–217. In: E.N. Pavlovsky (ed.) Otcherky po Obshtch. Vopr. Ichtiologii, Acad. Sci. SSSR Press, Moscow (in Russian).Google Scholar
  260. Vrba, E.S. 1980. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76: 61–84.Google Scholar
  261. Vrba, E.S. 1984. Patterns in the fossil record and evolutionary processes. pp. 115–142. In: M.-W. Ho & P.T. Saunders (ed.) Beyond neo-Darwinism: An Introduction to the New Evolutionary Paradigm, Academic Press, London.Google Scholar
  262. Wackernagel, H. 1968. Substitution and prefabricated diets for zoo animals. Symp. Zool. Soc. London 21: 1–12.Google Scholar
  263. Waddington, C.H. 1953. Epigenetics and evolution. pp. 186–199. In: Evolution, Symposia of the Society for Experimental Biology 7, Cambridge University Press, Cambridge.Google Scholar
  264. Waddington, C.H. 1961. Genetic assimilation. Adv. Genet. 10: 257–290.Google Scholar
  265. Waddington, C.H. 1975. The evolution of an evolutionist. Edinburgh University Press, Edinburgh. 328 pp.Google Scholar
  266. Waddington, C.H. 1977. Tools for thought. Paladin, Frogmore. 250 pp.Google Scholar
  267. Wake, M.H. 1989. Phylogenesis of direct development and viviparity in vertebrates. pp. 235–250. In: D.B. Wake & G. Roth (ed.) Complex Organismal Functions: Integration and Evolution in Vertebrates, John Wiley & Sons, Chichester.Google Scholar
  268. Wells, H. G. 1904. Food of the gods and how it came to earth. McMillan, London. 317 pp.Google Scholar
  269. West, B.J. & A.L. Goldberger. 1987. Physiology in fractal dimensions. Amer. Sci. 75: 354–365.Google Scholar
  270. Wiley, E.O. & D.R. Brooks. 1982. Victims of history – a nonequilibrium approach to evolution. Syst. Zool. 31: 1–24.Google Scholar
  271. Williamson, D.I. 1992. Larvae and evolution. Toward a new zoology. Chapman & Hall, New York. 223 pp.Google Scholar
  272. Wray, G.A. 1995. Punctuated evolution of embryos. Science 267: 1115–1116.Google Scholar
  273. Yamagami, K. 1981. Mechanisms of hatching in fish: secretion of hatching enzyme and enzymatic choriolysis. Amer. Zool. 21: 459–471.Google Scholar
  274. Yamamoto, M., I. Iuchi & K. Yamagami. 1979. Ultrastructural changes of the teleostean hatching gland cell during natural and electrically induced precocious secretion. Develop. Biol. 68: 162–174.Google Scholar
  275. Yeremeyeva, E.F. 1967. The etap theory of fish development and its relationship to other theorems on developmental discontinuity. pp. 3–17. In: A.M. Gibalevitch & M.T. Chernyakova (ed.) Morfoecologitscheskiy Analiz Razvitya Ryb, Nauka Press, Moscow (in Russian).Google Scholar
  276. Zimmer, C. 2001. Evolution. The triumph of an idea. Harper-Collins Publishers, New York. 364 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Eugene K. Balon
    • 1
  1. 1.Department of Zoology and the Axelrod Institute of IchthyologyUniversity of GuelphGuelphCanada

Personalised recommendations