Theory and Decision

, Volume 52, Issue 3, pp 233–260 | Cite as

The Minimax, the Minimin, and the Hurwicz Adjustment Principle

  • Bernhard F. Arnold
  • Ingrid Größl
  • Peter Stahlecker


In this paper the Hurwicz decision rule is applied to an adjustment problem concerning the decision whether a given action should be improved in the light of some knowledge on the states of nature or on other actors' behaviour. In comparison with the minimax and the minimin adjustment principles the general Hurwicz rule reduces to these specific classes whenever the underlying loss function is quadratic and knowledge is given by an ellipsoidal set. In the framework of the adjustment model discussed in this paper Hurwicz's optimism index can be interpreted as a mobility index representing the actor's attitude towards new external information. Examples are given that serve to illustrate the theoretical findings.

Adjustment model Ellipsoidal information Hurwicz principle Minimax principle Minimin principle Quadratic loss function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, B.F. and Stahlecker, P. (1999), Minimax adjustment technique and fuzzy information. Linear Algebra and its Applications 289, 25–39.Google Scholar
  2. Arnold, B.F. and Stahlecker, P. (2000), The minimax adjustment principle. Mathematical Methods of Operations Research 51, 103–113.Google Scholar
  3. Bamberg, G. and Coenenberg, A. G. (1994), Betriebswirtschaftliche Entscheidungslehre (in German), München: Vahlen.Google Scholar
  4. Bandemer, H. and Gottwald, S. (1995), Fuzzy sets, fuzzy logic, fuzzy methods with applications, Chichester: Wiley.Google Scholar
  5. Berger, J.O. (1980), Statistical Decision Theory, Foundations, Concepts, and Methods, New York: Springer.Google Scholar
  6. Pilz, J. (1991) Bayesian Estimation and Experimental Design in Linear Regression, 2nd ed., New York: Wiley.Google Scholar
  7. Rockafellar, R.T. (1970), Convex Analyss, Princeton: Princeton University Press.Google Scholar
  8. Rothenberg, T.J. (1973), Efficient Estimation with A Priori Information, New Haven: Yale University Press.Google Scholar
  9. Sion, M. (1958), On general minimax theorems. Pacific Journal of Mathematics 8, 171–176.Google Scholar
  10. Stahlecker, P., Größl, I. and Arnold, B.F. (1999), Monopolistic competition and supply behaviour under fuzzy price information, Homo Oeconomicus XV(4), 561–579.Google Scholar
  11. Stahlecker, P., Knautz, H. and Trenkler, G. (1996), Minimax adjustment technique in a parameter restricted model, Acta Applicandae Mathematicae 43, 139–144.Google Scholar
  12. Zimmermann, H.-J. (1996), Fuzzy Set Theory and its Applications,3rd ed., Dordrecht: Kluwer Academic Publishers.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Bernhard F. Arnold
    • 1
  • Ingrid Größl
    • 2
  • Peter Stahlecker
    • 1
  1. 1.Institut für Statistik und ÖkonometrieUniversität HamburgHamburgGermany
  2. 2.Hochschule für Wirtschaft und PolitikHamburgGermany

Personalised recommendations