Quantum Information Processing

, Volume 1, Issue 1–2, pp 45–53 | Cite as

Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization

  • Tobias J. Osborne
  • Michael A. Nielsen


We investigate the role of entanglement in quantum phase transitions, and show that the success of the density matrix renormalization group (DMRG) in understanding such phase transitions is due to the way it preserves entanglement under renormalization. We provide a reinterpretation of the DMRG in terms of the language and tools of quantum information science which allows us to rederive the DMRG in a physically transparent way. Motivated by our reinterpretation we suggest a modification of the DMRG which manifestly takes account of the entanglement in a quantum system. This modified renormalization scheme is shown, in certain special cases, to preserve more entanglement in a quantum system than traditional numerical renormalization methods.

PACS: 03.65.Ud, 73.43.Nq, 05.10.-a

entanglement quantum phase transitions renormalization group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Schrödinger, Proc. Camb. Philos. Soc. 31, 555 (1435)Google Scholar
  2. 2.
    J. S. Bell, Physics 1A, 195 (1964).Google Scholar
  3. 3.
    C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wooters, Phys. Rev. A. 54, 3824 (1996).Google Scholar
  4. 4.
    D. Aharonov, Phys. Rev. A. 62, 2311 (1999).Google Scholar
  5. 5.
    M. A. Nielsen, Ph.D. thesis, University of New Mexico (1998), quant-ph/0011036.Google Scholar
  6. 6.
    J. Preskill, J. Mod. Opt. 47, 127 (2000).Google Scholar
  7. 7.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).Google Scholar
  8. 8.
    R. M. Noack and S. R. White, in Density-matrix Renormalization (Dresden, 1998) (Springer, Berlin, 1999).Google Scholar
  9. 9.
    K. G. Wilson, Rev. Modern Phys. 47, 773 (1975).Google Scholar
  10. 10.
    S. R. White, Phys. Rev. Lett. 69, 2863 (1992).Google Scholar
  11. 11.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum in Formation (Cambridge University Press, Cambridge, 2000).Google Scholar
  12. 12.
    J. Preskill (1998), Physics 229 Lecture Notes online at http://www.theory.caltech/edu/ people/preskill/ph229/.Google Scholar
  13. 13.
    M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1995).Google Scholar
  14. 14.
    M. E. Fisher, Rev. Modern Phys. 70 (1998).Google Scholar
  15. 15.
    R. Bhatia, Matrix analysis (Springer Verlag, New York, 1997).Google Scholar
  16. 16.
    G. Vidal, D. Jonathan, and M. A. Nielsen, Phys. Rev. A (3) 62, 012304 (2000).Google Scholar
  17. 17.
    H. Barnum (1999), quant-ph/9910072.Google Scholar
  18. 18.
    T. J. Osborne and M. A. Nielsen (2002), quant-ph/0202162.Google Scholar
  19. 19.
    S. Rommer and Östlund, in Density-matrix Renormalization (Dresden, 1998) (Springer, Berlin, 1999), pp. 67-89.Google Scholar
  20. 20.
    P. Horodecki, R. Horodecki and M. Horodecki, Acta Phys. Slov. 48, 141 (1998).Google Scholar
  21. 21.
    X. Wang, H. Fu, and A. I. Solomon (2001), quanti-ph/0105075.Google Scholar
  22. 22.
    D. Gunlycke, S. Bose, V. M. Kendon, and V. Vedral (2001), quant-ph/0102137.Google Scholar
  23. 23.
    M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87, 2245 (2001).Google Scholar
  24. 24.
    D. A. Meyer and N. R. Wallach (2001), quanti-ph/0108104.Google Scholar
  25. 25.
    W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Tobias J. Osborne
    • 1
  • Michael A. Nielsen
    • 2
  1. 1.Department of MathematicsUniversity of QueenslandAustralia
  2. 2.Centre for Quantum Computer Technology and Department of PhysicsUniversity of QueenslandAustralia

Personalised recommendations