Differential Equations

, Volume 37, Issue 4, pp 464–471 | Cite as

A Critical Periodic Boundary Value Problem for a Matrix Riccati Equation

  • A. A. Boichuk
  • S. A. Krivosheya


Differential Equation Partial Differential Equation Ordinary Differential Equation Functional Equation Periodic Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reid, W.T., Riccati Differential Equations, New York: Academic, 1972.Google Scholar
  2. 2.
    Braison, A. and Kho Yu-Shi, Prikladnaya teoriya optimal'nogo upravleniya (Applied Optimal Control Theory), Moscow, 1972.Google Scholar
  3. 3.
    Jodar, L. and Navarro, E., Internat. J. Math. & Math. Sci., 1992, vol. 15, no. 2, pp. 359-366.Google Scholar
  4. 4.
    Boichuk, A.A., Zhuravlev, V.F., and Samoilenko, A.M., Obobshchenno-obratnye operatory i neterovy kraevye zadachi (Generalized Inverse Operators and Fredholm Boundary Value Problems), Kiev, 1995.Google Scholar
  5. 5.
    Gantmakher, F.R., Teoriya matrits (Theory of Matrices), Moscow, 1967.Google Scholar
  6. 6.
    Boichuk, O.A. and Krivosheya, S.A., Ukr. Mat. Zh., 1998, vol. 50, no. 8, pp. 1021-1027.Google Scholar
  7. 7.
    Malkin, I.G., Nekotorye zadachi teorii nelineinykh kolebanii (Some Problems of the Theory of Nonlinear Oscillations), Moscow, 1956.Google Scholar
  8. 8.
    Grebenikov, E.A. and Ryabov, Yu.A., Konstruktivnye metody analiza nelineinykh sistem (Constructive Methods in the Analysis of Nonlinear Systems), Moscow, 1979.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • A. A. Boichuk
    • 1
  • S. A. Krivosheya
  1. 1.Institute of MathematicsNational Academy of SciencesKievUkraine

Personalised recommendations