Boundary-Layer Meteorology

, Volume 101, Issue 2, pp 261–292 | Cite as

Airborne Investigation Of Arctic Boundary-Layer Fronts Over The Marginal Ice Zone Of The Davis Strait

  • C. Drüe
  • G. Heinemann
Article

Abstract

Three aircraft-based studies of boundary-layer fronts (BLFs) werecarried out during the experiment KABEG in April 1997near the sea-ice edge over the Davis Strait. The zone of strongestcross-front horizontal gradients showed a typical length scaleof 20 km, while the along-front scale was observed to beseveral hundreds of kilometres.The observed BLFs were stronger than the few previously reportedcases. Horizontal gradients of potential temperature and specifichumidity ranged up to 3 K or 0.25 g kg-1over 20 km, respectively.Low-level winds were around 15 m s-1 parallel to the ice edge.The capping inversion sloped from between250 and 400 m over sea ice to between 400 and 700 m over ocean.

For two BLF cases turbulent fluxes and energy budgets are calculated.Turbulent energy fluxes show a factor 2 to 3 contrast acrossthe ice edge and range from 15 to 50 W m-2 over sea iceand from 50 to 100 W m-1 over open ocean.The mean boundary-layer energy budgets are dominated bycold, dry horizontal advection, which is exceededby vertical heat flux convergence.The momentum budgets are dominated by pressure gradient force,Coriolis force and momentum flux divergence.

ACSYS Aircraft experiment Arctic boundary-layer fronts Sea-ice edge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brümmer, B.: 1996, ‘Boundary-Layer Modification in Wintertime Cold-Air Outbreaks from the Arctic Sea Ice’, Boundary-Layer Meteorol. 80, 109–125.Google Scholar
  2. Brümmer, B.: 1997, ‘Boundary Layer Mass, Water, and Heat Budgets in Wintertime Cold-Air Outbreaks from the Arctic Sea Ice’, Mon. Wea. Rev. 125, 1824–1837.Google Scholar
  3. Brümmer, B.,Rump, B., andKruspe, G.: 1992, ‘A Cold Air Outbreak near Spitzbergen in Springtime-Boundary-Layer Modification and Cloud Development’, Boundary-Layer Meteorol. 61, 13–46.Google Scholar
  4. Douglas, M. W.,Shapiro, M. A.,Fedor, L. S., andSaukkonen, L.: 1995, ‘Research Aircraft Observations of a Polar Low at the East Greenland Ice-Edge’, Mon. Wea. Rev. 123, 5–15.Google Scholar
  5. Drüe, C. andHeinemann, G.: 2001, ‘Turbulence Structures over the Marginal Ice Zone under Flow Parallel to the Ice Edge: Measurements and Parameterizations’, Boundary-Layer Meteorol., in press.Google Scholar
  6. Fairall, C.W. andMarkson, R.: 1987, ‘Mesoscale Variations in Surface Stress, Heat Fluxes, and Drag Coefficient in the Marginal Ice Zone of the Greenland Sea’, J. Geophys. Res. 92, 6921–6932.Google Scholar
  7. Fett, R. W.: 1989, ‘Polar Low Development Associated with Boundary Layer Fronts in the Greenland, Norwegian and Barents Seas’, in P. F. Twitchell,E. A. Rasmussen, andK. L. Davidson (eds.), Polar and Arctic Lows, A. Deepak Publishing, Hampton, VA, 421 pp.Google Scholar
  8. Freese, D. andKottmeier, Ch.: 1998, ‘Radiation Exchange between Stratus Clouds and Polar Marine Surfaces’, Boundary-Layer Meteorol. 87, 331–356.Google Scholar
  9. Grønås, S.,Foss, A., andLystad, M.: 1987, ‘Numerical Simulations of the Polar Lows in the Norwegian Sea’, Tellus. Ser. A 39, 334–353.Google Scholar
  10. Hartmann, J.,Borchert, A.,Freese, D.,Kottmeier, Ch.,Nagel, D., andReuter, A.: 1996, ‘Radiation and Eddy Flux Experiment 1995 (REFLEX III )’, Reports on Polar Research 218, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 62 pp.Google Scholar
  11. Hartmann, J.,Kottmeier, Ch., andWamser, Ch.: 1992, ‘Radiation and Eddy Flux Experiment 1991 (REFLEX I )’, Reports on Polar Research, 105, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 72 pp.Google Scholar
  12. Heinemann, G.: 1996, ‘On the Development of Wintertime Meso-Scale Cyclones near the Sea Ice Front in the Arctic and Antarctic’, Global Atmos.-Ocean Syst. 4, 89–123.Google Scholar
  13. Heinemann, G.: 1998a, ‘Katabatic Wind and Boundary Layer Front Experiment around Greenland (“KABEG’ 97”)’, Reports on Polar Research, 269, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 93 pp.Google Scholar
  14. Heinemann, G.: 1998b, ‘A Meso-Scale Model-Based Study of the Dynamics of a Wintertime Polar Low in the Weddell Sea Region of the Antarctic during WWSP86’, J. Geophys. Res. 103, 5983–6000.Google Scholar
  15. Johannessen, O. M.: 1987, ‘Introduction: Summer Marginal Ice Zone Experiments during 1983 and 1984 in Fram Strait and the Greenland Se a’, J. Geophys. Res. 92, 6716–6718.Google Scholar
  16. Kaimal, J. C. andFinnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, Oxford, 290 pp.Google Scholar
  17. Kellner, G.,Wamser, Ch., and Brown, R. A.: 1987, ‘An Observation of the Planetary Boundary Layer in the Marginal Ice Zone’, J. Geophys. Res. 92, 6955–6965.Google Scholar
  18. Key, J. R.: 1999, Streamer User’s Guide (Version 2.5p), Technical Report 96–01, Department of Geography, Boston University, 60 pp.Google Scholar
  19. Klein, T.,Heinemann, G.,Bromwich, D. H.,Cassano, J. J., andHines, K. M.: 2001, ‘Mesoscale Modeling of Katabatic Winds Over Greenland and Comparisons with AWS and Aircraft Data’, Meteorol. Atmosph. Phys., in press.Google Scholar
  20. Kottmeier, Ch.,Hartmann, J.,Wamser, Ch.,Borchert, A.,Lüpkes, Ch.,Freese, D., andCohrs, W.: 1994, ‘Radiation and Eddy Flux Experiment (REFLEX II)’, Reports on Polar Research, 133, Alfred-Wegener-Institut für Polarforschung, Bremerhaven, Germany, 62 pp.Google Scholar
  21. Lenschow, D. H.,Mann, J., andKristensen, L.: 1994, ‘How Long Is Long Enough when Measuring Fluxes and Other Turbulence Statistics?’, J. Atmos. Oceanic Tech. 11, 661–673.Google Scholar
  22. Phee, M. G.,Maykut, G. A., andMorrison, J. H.: 1987, ‘Dynamics and Thermodynamics of the Ice/Upper Ocean System in the Marginal Ice Zone of the Greenland Sea’, J. Geophys. Res. 92, 7017–7031.Google Scholar
  23. Shapiro, M. A. andFedor, L. S.: 1989, ‘A Case Study of an Ice-Edge Boundary Layer Front and Polar Low Development over the Norwegian an Barents Seas’, in P. F. Twitchell,E. A. Rasmussen andK. L. Davidson (eds.), Polar and Arctic Lows, A. Deepak Publishing, Hampton, VA, 421 pp.Google Scholar
  24. Shaw, W. J.,Pauley, R. L.,Gobel, T. M., andRadke, L. F.: 1991, ‘A Case Study of Atmospheric Boundary Layer Mean Structure for Flow Parallel to the Ice Edge: Aircraft Observations from CEAREX’, J. Geophys. Res. 96, 4691–4708.Google Scholar
  25. Sullivan, P. P.,Moeng, C.-H.,Stevens, B.,Lenschow, D. H., andMayor, S. D.: 1998, ‘Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 55, 3042–3064.Google Scholar
  26. World Climate Research Programme (WCRP): 1996, ‘Initial Implementation Plan the Arctic Climate System Study (ACSYS)’, WCRP Publication, 85, or WMO Technical Document, 627, World Meteorological Organization, Geneva, Switzerland.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • C. Drüe
    • 1
  • G. Heinemann
    • 1
  1. 1.Meteorologisches Institut der Universität Bonn (MIUB)BonnGermany

Personalised recommendations