Boundary-Layer Meteorology

, Volume 101, Issue 3, pp 329–358 | Cite as

A Simple Single-Layer Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And Slab Models

  • Hiroyuki Kusaka
  • Hiroaki Kondo
  • Yokihiro Kikegawa
  • Fujio Kimura


We developed a simple, single-layer urban canopy model, and comparedit to both multi-layer and slab models. Our single-layer model has thefollowing features: (a) It is a column model of energy and momentumexchange between an urban surface and the atmosphere, (b) it includesthe influence of street canyons, which are parameterized to representthe urban geometry, (c) it includes shadowing from buildings andreflection of radiation, and (d) it estimates both the surfacetemperatures of, and heat fluxes from, three surface types: roof, wall,and road. In the simulation of the single-layer model, the roof washottest during the daytime, but coolest from midnight to early morning.This is consistent with output from the multi-layer model and fieldobservations at a residential area on a clear, summer day. The diurnalvariation of the energy budget from the single-layer model agrees wellwith that from the multi-layer model. Our single-layer model'sperformance is nearly that of a multi-layer model for studyingmesoscale heat islands. Nevertheless, it is simply parameterized,and thus easily included in larger-scale atmospheric models. The slabmodel has the largest nighttime cooling rate of the three models. Toovercome this, it needs more adjustments than for the canopy models.

Heat island Mesoscale meteorological model Slab model Street canyon Urban canopy models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Architectural Institute of Japan: 1978, Data Book for Architectural Planning (Environment), Maruzen Co., Ltd., 275 pp. (in Japanese).Google Scholar
  2. Architectural Institute of Japan: 1980, Architectural Handbook, 2nd edn., Maruzen Co., Ltd., 2215 pp. (in Japanese).Google Scholar
  3. Arnfield, J., Herbert, J.M., and Johnson, G. T.: 1998, ‘A Numerical Simulation Investigation of Urban Canyon Energy Budget Variations’ in Proceedings of 2nd AMS Urban Environment Symposium, Albuquerque, New Mexico, November 2-7, 1998, American Meteorological Society, pp. 2-5.Google Scholar
  4. Asaeda, T., Fujino, T., and Armfield, S. W.: 2000, ‘Characteristics of Urban Heat Island in a City Located at the Bottom of Basin’ in G. A. Lawrence, R. Pieters, and N. Yonemitsu (eds.), Fifth International Symposium on Stratified Flows, II, Vancouver, Canada, July 10-13, 2000, pp. 1045-1050.Google Scholar
  5. Bonan, G. D.: 1996, A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological and Atmospheric Studies: Technical Description and User's Guide, NCAR Tech. Note NCAR/TN-417+STR, National Center for Atmospheric Research, Boulder, Colorado, 150 pp.Google Scholar
  6. Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation’ J. Geophys. Res. 83, 1889-1903.Google Scholar
  7. Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., and Wilson, M. F.: 1986, Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model, NCAR Tech. Note NCAR/TN-275+STR, National Center for Atmospheric Research, Boulder, CO, 69 pp.Google Scholar
  8. Depaul, F. T. and Sheih, C. M.: 1986, ‘Measurements of Wind Velocities in a Street Canyon’ Atmos. Environ. 20, 455-459.Google Scholar
  9. Dyer, A. J. and Hicks, B. B.: 1970, ‘Flux Gradient Relationship in the Constant Flux Layer’ Quart. J. Roy. Meteorol. Soc. 96, 715-721.Google Scholar
  10. Fujino, T., Asaeda, T., and Vu, T. C.: 1999, ‘Numerical Analyses of Urban Thermal Environment in a Basin Climate-Application of a k-" Model to Complex Terrain’ J. Wind Eng. Ind. Aerodyn. 81, 159-169.Google Scholar
  11. Gambo, K.: 1978, ‘Notes on the Turbulence Closure Model for Atmospheric Boundary Layers’ J. Meteorol. Soc. Japan 56, 466-480.Google Scholar
  12. Garratt, J. R.: 1994, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  13. Grimmond, C. S. B. and Oke, T. R.: 1995, ‘Comparison of Heat Fluxes from Summertime Observations in the Suburbs of Four North American Cities’ J. Appl. Meteorol. 34, 873-889.Google Scholar
  14. Ichinose, T., Shimodozono, K., and Hanaki, K.: 1999, ‘Impact of Anthropogenic Heat on Urban Climate in Tokyo’ Atmos. Environ. 33, 3897-3909.Google Scholar
  15. Johnson, G. T., Oke, T. R., Lyons, T. J., Steyn, D. G., Watson, I. D., and Voogt, J. A.: 1991, ‘Simulation of Surface Urban Heat Islands under “Ideal’ Conditions at Night, Part 1: Theory and Tests Against Field Data’ Boundary-Layer Meteorol. 56, 275-294.Google Scholar
  16. Kanda, M., Inoue, Y., and Uno, I.: 2001, ‘Numerical Study on Cloud Lines over an Urban Street in Tokyo’ Boundary-Layer Meteorol. 98, 251-273.Google Scholar
  17. Kimura, F.: 1989, ‘Heat Flux on Mixture of Different Land-Use Surface: Test of a New Parameterization Scheme’ J. Meteorol. Soc. Japan 67, 401-409.Google Scholar
  18. Kimura, F. and Takahashi, S.: 1991, ‘The Effects of Land-Use and Anthropogenic Heating on the Surface Temperature in the Tokyo Metropolitan Area: A Numerical Experiment’ Atmos. Environ. 25B, 155-164.Google Scholar
  19. Kondo, J.: 1994, Hydro-Meteorology, Asakura Press, 350 pp. (in Japanese).Google Scholar
  20. Kondo, H. and Liu, F. H.: 1998, ‘A Study on the Urban Thermal Environment Obtained through One-Dimensional Urban Canopy Model’ J. Japan. Soc. Atmos. Environ. 33, 179-192 (in Japanese).Google Scholar
  21. Kondo, J. and Watanabe, T.: 1992, ‘Studies on the Bulk Transfer Coefficients over a Vegetated Surface with a Multilayer Energy Budget Model’ J. Atmos. Sci. 49, 2183-2199.Google Scholar
  22. Kondo, J., Kanechika, O., and Yasuda, N.: 1978, ‘Heat and Momentum Transfers under Strong Stability in the Atmospheric Surface Layer’ J. Atmos. Sci. 35, 1012-1021.Google Scholar
  23. Kondo, H., Kikegawa, Y., Genchi, Y., and Yamamoto, S.: 1999, ‘Heating in the Urban Canopy by Anthropogenic Energy Use’ Proceedings of 15th International Congress of Biometeorology and International Conference on Urban Climatology (ICB-ICUC’ 99), Sydney, Australia, November 8-12, 1999, ICB-ICUC, in CD-ROM.Google Scholar
  24. Kusaka, H., Kimura, F., Hirakuchi, H., and Mizutori, M.: 1999, ‘Change in the Daily Maximum Temperature due to Urbanization during an 85 Year Period. Numerical Simulation Using a Mesoscale Model with a Simple Parameterization of Urban Canopy Layer’ Proceedings of 15th International Congress of Biometeorology and International Conference on Urban Climatology (ICB-ICUC’ 99), Sydney, Australia, November 8-12, 1999, ICB-ICUC, in CD-ROM.Google Scholar
  25. Kusaka, H., Kimura, F., Hirakuchi, H., and Mizutori, M.: 2000, ‘The Effects of Land-Use Alteration on the Sea Breeze and Daytime Heat Island in the Tokyo Metropolitan Area’ J. Meteorol. Soc. Japan 78, 405-420.Google Scholar
  26. Masson, V.: 2000, ‘A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models’ Boundary-Layer Meteorol. 94, 357-397.Google Scholar
  27. Mills, G. M.: 1993, ‘Simulation of the Energy Budget of an Urban Canyon-1. Model Structure and Sensitivity Test’ Atmos. Environ. 27B, 157-170.Google Scholar
  28. Montavez, J. P. and Jimenez, J. I.: 2000, ‘A Monte Carlo Model of the Nocturnal Surface Temperatures in Urban Canyons’ Boundary-Layer Meteorol. 96, 433-452.Google Scholar
  29. Narita, K., Nonomura, Y., and Ogasa, A.: 1997, ‘Real Scale Measurement of Convective Mass Transfer Coefficient at Window in Natural Wind: Study on Convective Heat Transfer Coefficient at Outside Building Wall in an Urban Area Part 1’ J. Archit. Plann. Environ. Eng., AIJ 491, 49-56 (in Japanese).Google Scholar
  30. Narita, K., Sekine, T., and Tokuoka, T.: 1984, ‘Thermal Properties of Urban Surface Materials-Study on Heat Balance at Asphalt Pavement’ Geogr. Rev. Japan 57 (Ser. A), 639-651 (in Japanese).Google Scholar
  31. Nicholson, S. E.: 1975, ‘A Pollution Model for Street-Level Air’ Atmos. Environ. 9, 19-31.Google Scholar
  32. Nunez, M. and Oke, T. R.: 1977, ‘The Energy of an Urban Canyon’ J. Appl. Meteorol. 16, 11-19.Google Scholar
  33. Sakakibara, Y.: 1995, ‘A Numerical Study of the Effect of Urban Geometry upon the Surface Energy Budget’ Atmos. Environ. 30, 487-496.Google Scholar
  34. Seaman, N. L., Ludwig, F. L., Donall, E. G, Warner, T. T., and Bhumralker, C. M.: 1989, ‘Numerical Studies of Urban Planetary Boundary-Layer Structure under Realistic Synoptic Condition’ J. Appl. Meteorol. 28, 760-781.Google Scholar
  35. Sorbjan, Z. and Uliasz, M.: 1982, ‘Some Numerical Urban Boundary-Layer Studies’ Boundary-Layer Meteorol. 22 481-502.Google Scholar
  36. Swaid, H.: 1993, ‘The Role of Radiative-Convective Interaction in Creating the Microclimate of Urban Street Canyons’ Boundary-Layer Meteorol. 64, 231-259.Google Scholar
  37. Taha, H.: 1999, ‘Modifying a Mesoscale Meteorological Model to Better Incorporate Urban Heat Storage: A Bulk Parameterization Approach’ J. Appl. Meteorol. 38, 466-473.Google Scholar
  38. Tanaka, S., Takeda, H., Adachi, T., and Tsuchiya, T.: 1993, Architectural Environmental Engineering, Inoue Co., Ltd., 301 pp. (in Japanese).Google Scholar
  39. Urano, A., Ichinose, T., and Hanaki, K.: 1999, ‘Thermal Environment Simulation for Three Dimensional Replacement of Urban Activity’ J. Wind Eng. Ind. Aerodyn. 81, 197-210.Google Scholar
  40. Voogt, J. A. and Grimmond, C. S. B.: 1999, ‘Bulk Heat Transfer Modeling of Urban Surface Sensible Heat Flux’ Proceedings of 15th International Congress of Biometeorology and International Conference on Urban Climatology (ICB-ICUC’ 99), Sydney, Australia, November 8-12, 1999, ICB-ICUC, in CD-ROM.Google Scholar
  41. Vu T. C., Asaeda, T., and Ashie, Y.: 1999, ‘Development of a Numerical Model for the Evaluation of the Urban Thermal Environment’ J. Wind Eng. Ind. Aerodyn. 81, 181-191.Google Scholar
  42. Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: 1991, ‘A Simplified Biosphere Model for Global Climate Studies’ J. Climate 4, 345-364.Google Scholar
  43. Yamazaki, T., Kondo, J., and Watanabe, T.: 1992, ‘A Heat-Balance Model with a Canopy of One or Two Layers and its Application to Field Experiments’ J. Appl. Meteorol. 31, 86-103.Google Scholar
  44. Watanabe, T. and Kondo, J.: 1990, ‘The Influence of Canopy Structure and Density upon the Mixing Length within and above Vegetation’ J. Meteorol. Soc. Japan 68, 227-235.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Hiroyuki Kusaka
    • 1
  • Hiroaki Kondo
    • 2
  • Yokihiro Kikegawa
    • 3
  • Fujio Kimura
    • 4
  1. 1.Fluid Science DepartmentAbiko Research Laboratory, Central Research Institute of Electric Power IndustryChiba-kenJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyJapan
  3. 3.Fuji Research InstituteJapan
  4. 4.Institute of GeoscienceUniversity of TsukubaJapan

Personalised recommendations