Numerical Algorithms

, Volume 20, Issue 1, pp 75–100

Solving stable generalized Lyapunov equations with the matrix sign function

  • Peter Benner
  • Enrique S. Quintana-Ortí


We investigate the numerical solution of the stable generalized Lyapunov equation via the sign function method. This approach has already been proposed to solve standard Lyapunov equations in several publications. The extension to the generalized case is straightforward. We consider some modifications and discuss how to solve generalized Lyapunov equations with semidefinite constant term for the Cholesky factor. The basic computational tools of the method are basic linear algebra operations that can be implemented efficiently on modern computer architectures and in particular on parallel computers. Hence, a considerable speed-up as compared to the Bartels–Stewart and Hammarling methods is to be expected. We compare the algorithms by performing a variety of numerical tests.

generalized Lyapunov equations mathematical software matrix sign function Newton iteration algebraic Riccati equations 65F10 93B40 93B51 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.D.O. Anderson and J.B. Moore, Optimal Control – Linear Quadratic Methods (Prentice-Hall, Englewood Cliffs, NJ, 1990).Google Scholar
  2. [2]
    E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users' Guide, 2nd ed. (SIAM, Philadelphia, PA, 1995).Google Scholar
  3. [3]
    Z. Bai and J. Demmel, Design of a parallel nonsymmetric eigenroutine toolbox, Part I, in: Proc. of the 6th SIAM Conf. on Parallel Processing for Scientific Computing, eds. R.F. Sincovec et al. (1993).Google Scholar
  4. [4]
    Z. Bai and J. Demmel, Using the matrix sign function to compute invariant subspaces, SIAM J. Matrix Anal. Appl. 19(1) (1998) 205–225.Google Scholar
  5. [5]
    R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX + XB = C: Algorithm 432, Commun. ACM 15 (1972) 820–826.Google Scholar
  6. [6]
    A.N. Beavers and E.D. Denman, A new solution method for the Lyapunov matrix equations, SIAM J. Appl. Math. 29 (1975) 416–421.Google Scholar
  7. [7]
    P. Benner, Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems (Logos, Berlin, 1997). Also: Dissertation, Fakultät für Mathematik, TU Chemnitz-Zwickau (1997).Google Scholar
  8. [8]
    P. Benner and R. Byers, An exact line search method for solving generalized continuous-time algebraic Riccati equations, IEEE Trans. Automat. Control 43(1) (1998) 101–107.Google Scholar
  9. [9]
    P. Benner, A.J. Laub and V. Mehrmann, A collection of benchmark examples for the numerical solution of algebraic Riccati equations I: Continuous-time case, Technical Report SPC 95/22, Fakultät für Mathematik, TU Chemnitz-Zwickau, Germany (1995). Available from Scholar
  10. [10]
    P. Benner and E.S. Quintana-Ortí, Solving stable generalized Lyapunov equations with the matrix sign function, Technical Report SFB393/97-23, Fakultät für Mathematik, TU Chemnitz-Zwickau, Germany (1997). Available from http://www.tu-chemnitz. de/sfb393/sfb97pr.html.Google Scholar
  11. [11]
    R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl. 85 (1987) 267–279.Google Scholar
  12. [12]
    R. Byers, C. He and V. Mehrmann, The matrix sign function method and the computation of invariant subspaces, SIAM J. Matrix Anal. Appl. 18(3) (1997) 615–632.Google Scholar
  13. [13]
    E.D. Denman and A.N. Beavers, The matrix sign function and computations in systems, Appl. Math. Comput. 2 (1976) 63–94.Google Scholar
  14. [14]
    J.D. Gardiner, Stabilizing control for second-order models and positive real systems, AIAA J. Guidance, Dynamics and Control 15(1) (1992) 280–282.Google Scholar
  15. [15]
    J.D. Gardiner and A.J. Laub, A generalization of the matrix-sign-function solution for algebraic Riccati equations, Internat. J. Control 44 (1986) 823–832.Google Scholar
  16. [16]
    J.D. Gardiner, A.J. Laub, J.J. Amato and C.B. Moler, Solution of the Sylvester matrix equation AXB + CXD = E, ACM Trans. Math. Software 18 (1992) 223–231.Google Scholar
  17. [17]
    G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins Univ. Press, Baltimore, MD, 1996).Google Scholar
  18. [18]
    S.J. Hammarling, Newton's method for solving the algebraic Riccati equation, NPL Report DITC 12/82, National Physical Laboratory, Teddington, Middlesex, UK (1982).Google Scholar
  19. [19]
    S.J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation, IMA J. Numer. Anal. 2 (1982) 303–323.Google Scholar
  20. [20]
    U. Helmke and J.B. Moore, Optimization and Dynamical Systems (Springer, London, 1994).Google Scholar
  21. [21]
    N.J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, PA, 1996).Google Scholar
  22. [22]
    W.D. Hoskins, D.S. Meek and D.J. Walton, The numerical solution of A0Q + QA = –C, IEEE Trans. Automat. Control 22 (1977) 882–883.Google Scholar
  23. [23]
    C. Kenney and A.J. Laub, The matrix sign function, IEEE Trans. Automat. Control 40(8) (1995) 1330–1348.Google Scholar
  24. [24]
    P. Lancaster and L. Rodman, The Algebraic Riccati Equation (Oxford Univ. Press, Oxford, 1995).Google Scholar
  25. [25]
    P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed. (Academic Press, Orlando, 1985).Google Scholar
  26. [26]
    V.B. Larin and F.A. Aliev, Construction of square root factor for solution of the Lyapunov matrix equation, Systems Control Lett. 20 (1993) 109–112.Google Scholar
  27. [27]
    I. Lewkowicz, Convex invertible cones of matrices – a unified framework for equations of Sylvester, Lyapunov and Riccati, Dept. Elec. Comp. Eng., Ben-Gurion University, Israel (1997).Google Scholar
  28. [28]
    V. Mehrmann, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution, Lecture Notes in Control and Information Sciences, Vol. 163 (Springer, Heidelberg, 1991).Google Scholar
  29. [29]
    P. Misra, P. Van Dooren and A. Varga, Computation of structural invariants of generalized state-space systems, Automatica 30(12) (1994) 1921–1936.Google Scholar
  30. [30]
    T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comput. Math. 8 (1997) 33–48.Google Scholar
  31. [31]
    P.H. Petkov, N.D. Christov and M.M. Konstantinov, Computational Methods for Linear Control Systems (Prentice-Hall, Hertfordshire, UK, 1991).Google Scholar
  32. [32]
    J.D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Internat. J. Control 32 (1980) 677–687. (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971.)Google Scholar
  33. [33]
    I.G. Rosen and C. Wang, A multi-level technique for the approximate solution of operator Lyapunov and algebraic Riccati equations, SIAM J. Numer. Anal. 32(2) (1995) 514–541.Google Scholar
  34. [34]
    M.G. Safonov and R.Y. Chiang, Model reduction for robust control: A Schur relative error method, Internat. J. Adapt. Control Signal Process. 2 (1998) 259–272.Google Scholar
  35. [35]
    G. Schelfhout, Model reduction for control design, Ph.D. thesis, Dept. Electrical Engineering, KU Leuven, Belgium (1996).Google Scholar
  36. [36]
    V. Sima, Algorithms for Linear-Quadratic Optimization, Pure and Applied Mathematics, Vol. 200 (Marcel Dekker, New York, 1996).Google Scholar
  37. [37]
    A. Varga and T. Katayama, Computation of J-inner–outer factorizations of rational matrices, Internat. J. Robust Nonlinear Control 8 (1998) 245–263.Google Scholar
  38. [38]
    J.H. Wilkinson, Rounding Errors in Algebraic Processes (Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Peter Benner
    • 1
  • Enrique S. Quintana-Ortí
    • 2
  1. 1.Zentrum für Technomathematik, Fachbereich 3/Mathematik und InformatikUniversität BremenBremenGermany
  2. 2.Departamento de InformáticaUniversidad Jaime ICastellónSpain

Personalised recommendations