Queueing Systems

, Volume 33, Issue 1–3, pp 261–275 | Cite as

Appendix: A primer on heavy-tailed distributions

  • Karl Sigman


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Abate, G.L. Choudhury and W. Whitt, Exponential approximations for tail probabilities of queues, I: waiting times, Oper. Res. 43 (1995) 885–901.Google Scholar
  2. [2]
    S. Asmussen, Applied Probability and Queues (Wiley, New York, 1987).Google Scholar
  3. [3]
    S. Asmussen, Ruin Probabilities (World Scientific, Singapore, 1999, to appear).Google Scholar
  4. [4]
    S. Asmussen, C. Kl¨ uppelberg and K. Sigman, Sampling at subexponential times, with queueing applications, Stochastic Process. Appl. 79 (1999) 265–286.CrossRefGoogle Scholar
  5. [5]
    N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation (Cambridge University Press, Cambridge, 1987).Google Scholar
  6. [6]
    V.P. Chistyakov, A theorem on sums of independent, positive random variables and its applications to branching processes, Theor. Probab. Appl. 9 (1964) 640–648.CrossRefGoogle Scholar
  7. [7]
    P. Embrechts, C. Kl ¨ uppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance (Springer, Heidelberg, 1997).Google Scholar
  8. [8]
    P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics 1 (1982) 55–72.CrossRefGoogle Scholar
  9. [9]
    C.M. Goldie, Subexponential distributions and dominated-variation tails, J. Appl. Probab. 15 (1978) 440–442.CrossRefGoogle Scholar
  10. [10]
    C.M. Goldie and C. Kl ¨ uppelberg, Subexponential distributions, in: A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy Tailed Distributions,eds.R. Adler, R. Feldman and M.S. Taqqu (Birkh¨ auser, Boston, 1998) pp. 435–459.Google Scholar
  11. [11]
    C. Kl¨ uppelberg, Subexponential distributions and integrated tails, J. Appl. Probab. 25 (1988) 132–141.CrossRefGoogle Scholar
  12. [12]
    A. Pakes, On the tails of waiting time distributions, J. Appl. Probab. 12 (1975) 555–564.CrossRefGoogle Scholar
  13. [13]
    E.J.G. Pitman, Subexponential distribution functions, J. Austral. Math. Soc. Ser. A 29 (1980) 337–347.CrossRefGoogle Scholar
  14. [14]
    T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance (Wiley, New York, 1999).Google Scholar
  15. [15]
    K. Sigman, Stationary Marked Point Processes: An Intuitive Approach (Chapman and Hall, New York, 1995).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Karl Sigman
    • 1
  1. 1.Department of Industrial Engineering and Operations ResearchColumbia University in the City of New YorkNew YorkUSA

Personalised recommendations