Tribology Letters

, 7:73 | Cite as

Observation of proportionality between friction and contact area at the nanometer scale

  • M. Enachescu
  • R.J.A. van den Oetelaar
  • R.W. Carpick
  • D.F. Ogletree
  • C.F.J. Flipse
  • M. Salmeron
Article

Abstract

The nanotribological properties of a hydrogen‐terminated diamond(111)/tungsten‐carbide interface have been studied using ultra‐high vacuum atomic force microscopy. Both friction and local contact conductance were measured as a function of applied load. The contact conductance experiments provide a direct and independent way of determining the contact area between the conductive tungsten‐carbide AFM tip and the doped diamond sample. We demonstrate that the friction force is directly proportional to the real area of contact at the nanometer‐scale. Furthermore, the relation between the contact area and load for this extremely hard heterocontact is found to be in excellent agreement with the Derjaguin–Müller–Toporov continuum mechanics model.

nanotribology friction contact area atomic force microscopy diamond tungsten carbide 

References

  1. [1]
    D. Dowson,, History of Tribology (Longman, London, 1998).Google Scholar
  2. [2]
    J.A. Greenwood and J.B.P. Williamson, Proc. Roy. Soc. London Ser. A 295 (1966) 300.Google Scholar
  3. [3]
    R.W. Carpick, N. Agraït, D.F. Ogletree and M. Salmeron, J. Vac. Sci. Technol. B 14 (1996) 1289.CrossRefGoogle Scholar
  4. [4]
    M.A. Lantz, S.J. O'shea, M.E. Welland and K.L. Johnson, Phys. Rev. B 55 (1997) 10776; M.A. Lantz, S.J. O'shea and M.E. Welland, Phys. Rev. B 56 (1997) 15345.CrossRefGoogle Scholar
  5. [5]
    M. Enachescu, R.J.A. van den Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse and M. Salmeron, Phys. Rev. Lett. 81 (1998) 1877.CrossRefGoogle Scholar
  6. [6]
    R.W. Carpick, M. Enachescu, D.F. Ogletree and M. Salmeron, in:, Fracture and Ductile versus Brittle Behavior: Theory, Modeling, and Experiment, Proceedings of the MRS Fall Meeting, Boston, 1998, eds. G. Beltz, K.-S. Kim and M. Marder.Google Scholar
  7. [7]
    K.L. Johnson, K. Kendall and A.D. Roberts, Proc. Roy. Soc. London Ser. A 324 (1971) 301.Google Scholar
  8. [8]
    D. Maugis, J. Colloid Interface Sci. 150 (1992)243; K.L. Johnson, Proc. Roy. Soc. London Ser. A 453 (1997)163.CrossRefGoogle Scholar
  9. [9]
    B.V. Derjaguin, V.M. M¨uller and Y.P. Toporov, J. Colloid Interface Sci. 53 (1975)314; V.M. Müller, B.V. Derjaguin and Y.P. Toporov, Colloids Surf. 7 (1983) 251.CrossRefGoogle Scholar
  10. [10]
    H. Seki, G.M. McClelland and D.C. Bullock, Wear 116 (1987) 381; H. Tsai and D.B. Bogy, J. Vac. Sci. Technol. A 5 (1987) 3287.CrossRefGoogle Scholar
  11. [11]
    M.M. Schwartz,, Ceramic Joining (ASM International, Materials Park, 1990).Google Scholar
  12. [12]
    A.M. Homola, J.N. Israelachvili, M.L. Gee and P.M. McGuiggan, J. Tribol. 111 (1989)675.CrossRefGoogle Scholar
  13. [13]
    K.L. Johnson,, Contact Mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
  14. [14]
    V.M. Müller, V.S. Yushenko and B.V. Derjaguin, J. Colloid Interface Sci. 77 (1980) 91.CrossRefGoogle Scholar
  15. [15]
    D. Tabor, J. Colloid Interface Sci. 58 (1977) 2; K.L. Johnson, Langmuir 12 (dy1996) 4510.CrossRefGoogle Scholar
  16. [16]
    J.A. Greenwood, Proc. Roy. Soc. London Ser. A 453 (1997) 1277.CrossRefGoogle Scholar
  17. [17]
    A.G.M. Jansen, A.P. van Gelder and P. Wyder, J. Phys. C 13 (1980) 6073.Google Scholar
  18. [18]
    S.M. Sze,, Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
  19. [19]
    G. Rubio, N. Agraït and S. Vieira, Phys. Rev. Lett. 76 (1996) 2303.CrossRefGoogle Scholar
  20. [20]
    M.N. Gardos, in:, Synthetic Diamond: Emerging CVD Science and Technology, eds. K.E. Spear and J.P. Dismukes (Wiley, New York, 1994) p.419.Google Scholar
  21. [21]
    Q. Dai, R. Vollmer, R.W. Carpick, D.F. Ogletree and M. Salmeron, Rev. Sci. Instrum. 66 (1995) 5266.CrossRefGoogle Scholar
  22. [22]
    R.J.A. van den Oetelaar and C.F.J. Flipse, Surf. Sci. 384 (1997) L828.CrossRefGoogle Scholar
  23. [23]
    NT-MDT Co., Moscow, Russia.Google Scholar
  24. [24]
    D.F. Ogletree, R.W. Carpick and M. Salmeron, Rev. Sci. Instrum. 67 (1996) 3298.CrossRefGoogle Scholar
  25. [25]
    J. Hu, X.-D. Xiao, D.F. Ogletree and M. Salmeron, Surf. Sci. 327 (1995)358.CrossRefGoogle Scholar
  26. [26]
    F. Atamny and A. Baiker, Surf. Sci. 323 (1995) L314.CrossRefGoogle Scholar
  27. [27]
    S.S. Sheiko, M. Möller, E.M.C.M. Reuvekamp and H.W. Zandbergen, Phys. Rev. B 48 (1993) 5675.CrossRefGoogle Scholar
  28. [28]
    C.A. Klein, Mater. Res. Bull. 27 (1992) 1407.CrossRefGoogle Scholar
  29. [29]
    J.F. Shackelford, W. Alexander and J.S. Park, eds.,, CRC Materials Science and Engineering Handbook (CRC Press, Boca Raton, 1994).Google Scholar
  30. [30]
    R.W. Carpick and M. Salmeron, Chem. Rev. 97 (1997) 1163, and references therein.CrossRefGoogle Scholar
  31. [31]
    R.W. Carpick, Q. Dai, D.F. Ogletree and M. Salmeron, Tribol. Lett. 5 (1998) 91.CrossRefGoogle Scholar
  32. [32]
    E. Barrena, S. Kopta, D.F. Ogletree, D.H. Charych and M. Salmeron, Phys. Rev. Lett. 82 (1999) 2880.CrossRefGoogle Scholar
  33. [33]
    A.H. Cottrell,, Introduction to the Modern Theory of Metals (Institute of Metals, Brookfield, 1988).Google Scholar
  34. [34]
    J. Hurtado and K.-S. Kim, Proc. Roy. Soc. London Ser. A, in press.Google Scholar
  35. [35]
    J. Hurtado and K.-S. Kim, in:, Fracture and Ductile versus Brittle Behavior: Theory, Modeling, and Experiment, Proceedings of the MRS Fall Meeting, Boston, 1998, eds. G. Beltz, K.-S. Kim and M. Marder.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. Enachescu
    • 1
  • R.J.A. van den Oetelaar
    • 1
  • R.W. Carpick
    • 1
  • D.F. Ogletree
    • 1
  • C.F.J. Flipse
    • 1
  • M. Salmeron
    • 1
  1. 1.Materials Sciences Division, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations