Telecommunication Systems

, Volume 7, Issue 1–3, pp 209–227 | Cite as

Stochastic geometry and architecture of communication networks

  • François Baccelli
  • Maurice Klein
  • Marc Lebourges
  • Sergei Zuyev


This paper proposes a new approach for communication networks planning based on stochastic geometry. We first summarize the state of the art in this domain, together with its economic implications, before sketching the main expectations of the proposed method. The main probabilistic tools are point processes and stochastic geometry. We show how several performance evaluation and optimization problems within this framework can actually be posed and solved by computing the mathematical expectation of certain functionals of point processes. We mainly analyze models based on Poisson point processes, for which analytical formulae can often be obtained, although more complex models can also be analyzed, for instance via simulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Baccelli, M. Klein, M. Lebourges and S. Zuyev, Géométrie aléatoire et architecture de réseaux de communications, Annales des Télécommunications 51 (1996) 158–179.Google Scholar
  2. [2]
    F. Baccelli, M. Klein and S. Zuyev, Perturbation analysis of functionals of random measures, Adv. Appl. Probab. 27 (1995) 306–325.CrossRefGoogle Scholar
  3. [3]
    F. Baccelli and S. Zuyev, Stochastic geometry models of mobile communication networks, in: Frontiers in Queuing. Models, Methods and Problems, ed. J.H. Dshalalow (CRC Press, 1996) chapter 8, pp. 227–243.Google Scholar
  4. [4]
    F. Baccelli and S. Zuyev, Poisson-Voronoi spanning trees with applications to the optimization of communication networks, INRIA Report 3040 (November 1996).Google Scholar
  5. [5]
    M. Curien and N. et Gensollen, Economie de Télécommunications. Ouverture et Réglementation (Economica-ENSPTT, Paris, 1992).Google Scholar
  6. [6]
    D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer, New York, 1988).Google Scholar
  7. [7]
    S. Foss and S. Zuyev, On a certain Voronoi aggregative process related to a bivariate Poisson process, Adv. Appl. Probab. 28 (1996) 965–981.CrossRefGoogle Scholar
  8. [8]
    G. Grahovac and M. Lebourges, A stochastic geometry model of civil engineering infrastructure in the local loop, in: '96 Conference, Sydney, Australia (24-29 November 1996).Google Scholar
  9. [9]
    J.F.C. Kingman, Poisson Processes, Oxford Studies in Probability (Oxford University Press, 1993).Google Scholar
  10. [10]
    J. Møller, Lectures on Random Voronoi Tesselations, Lecture Notes in Statistics 87 (Springer, 1994).Google Scholar
  11. [11]
    L. Muche and D. Stoyan, Contact and chord length distributions of the Poisson Voronoi tesselation, J. Appl. Probab. 29 (1992) 467–471.CrossRefGoogle Scholar
  12. [12]
    A. Okabe, B. Boots and K. Sugihara, Spatial Tesselations, Wiley Series in Probability and Mathematical Statistics (Wiley, 1992).Google Scholar
  13. [13]
    D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications, Wiley Series in Probability and Mathematical Statistics (Wiley, Chichester, 1987).Google Scholar
  14. [14]
    S. Zuyev, P. Desnogues and H. Rakotoarisoa, Simulations of large telecommunication networks based on probabilistic modeling, J. Electronic Imaging 6(1) (1997) 68–77.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • François Baccelli
    • 1
  • Maurice Klein
    • 2
  • Marc Lebourges
    • 3
  • Sergei Zuyev
    • 1
  1. 1.Sophia‐AntipolisINRIAFrance
  2. 2.France TELECOM, CNETIssy Les MoulineauxFrance
  3. 3.France TELECOMParisFrance

Personalised recommendations