Topics in Catalysis

, Volume 4, Issue 3–4, pp 301–309 | Cite as

Palladium–catalyzed C–C– and C–N–coupling reactions of aryl chlorides

  • Thomas H. Riermeier
  • Alexander Zapf
  • Matthias Beller
Article

Abstract

In this paper we report a brief review of the palladium–catalyzed olefination and amination of aryl chlorides. Special emphasis is given on the efficiency of known catalysts. Best turnover numbers (TON up to 40,000) known to date for Heck reactions are displayed by palladacycle catalysts, e.g., 1 in the presence of salts as co–catalysts. Model studies show that the catalyst productivity is strongly influenced by the nature of the added salt. In addition, the ability of mixtures of Pd(OAc)2 and phosphines to catalyze the reaction of styrene with 1–chloro–4–trifluoromethylbenzene was studied dependent on the Pd:P ratio. It was found that apart from the palladacycle 1 a number of established phosphines permit efficient C–Cl activation. Amination of aryl chlorides is also possible in the presence of palladacycles as catalyst precursors. Crucial for the success of the C–N bond forming reaction is the use of potassium tert–butoxide as base and reaction temperatures > 120°C. Turnover numbers up to 900 and yields up to 80% have been obtained for the amination of 1–chloro–4–trifluoromethylbenzene.

Heck reaction amination aryl chlorides palladium catalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Beller, T.H. Riermeier, C.-P. Reisinger and W.A. Herrmann, Tetrahedron Lett. 38 (1997) 2073.CrossRefGoogle Scholar
  2. [2] (a)
    R.F. Heck and J.P. Nolley, Jr., J. Org. Chem. 37 (1972) 2320CrossRefGoogle Scholar
  3. (b).
    T. Mizoroki, K. Mori and A. Ozaki, Bull. Chem. Soc. Jpn. 44 (1971) 581CrossRefGoogle Scholar
  4. (c).
    R.F. Heck, Org. React. (New York) 27 (1982) 345Google Scholar
  5. (d).
    J. Tsuji, Palladium Reagents and Catalysts (John Wiley & Sons Ltd., Chichester, 1995)Google Scholar
  6. (e).
    T. Jeffery, Adv. Met. Org. Chem. 5 (1996) 153Google Scholar
  7. (f).
    W.A. Herrmann, in: Applied Homogeneous Catalysis, eds. B. Cornils and W.A. Herrmann (VCH, Weinheim, 1996) p. 712.Google Scholar
  8. [3]
    K.C. Nicolaou and E.J. Sorensen, Classics in Total Synthesis (VCH, Weinheim, 1996).Google Scholar
  9. [4]
    A. de Meijere and F.E. Meyer, Angew. Chem. 106 (1994) 2473; Angew. Chem. Int. Ed. Engl. 33 (1994) 2379.Google Scholar
  10. [5]
    W.G. Earley, T. Oh and L.E. Overman, Tetrahedron Lett. 29 (1988) 3785.CrossRefGoogle Scholar
  11. [6]
    H.A. Dieck and R.F. Heck, J. Am. Chem. Soc. 96 (1974) 1133.CrossRefGoogle Scholar
  12. [7] (a)
    P. Fitton and E.A. Rick, J. Organomet. Chem. 28 (1971) 287CrossRefGoogle Scholar
  13. (b).
    D.R. Coulson, Chem. Commun. (1968) 1530.Google Scholar
  14. [8]
    (a) R.R. Bader, P. Baumeister and H.-U. Blaser, Chimia 50 (1996) 99; (b)_ P. Baumeister, G. Seifert and H. Steiner (Ciba-Geigy AG), EP-A 584 043 (1992) [Chem. Abstr. 120 (1994) 322 928n].Google Scholar
  15. [9]
    M. Beller, A. Tafesh and W.A. Herrmann, DE 19 503 119 (1996).Google Scholar
  16. [10]
    R.A. DeVries and A. Mendoza, Organometallics 13 (1994) 2405.CrossRefGoogle Scholar
  17. [11]
    Heteroaryl chlorides display similar reactivity compared to aryl bromides and are therefore beyond the scope of this text. For example seeGoogle Scholar
  18. (a).
    Y. Akita, T. Noguchi, M. Sugimoto and A. Ohta, J. Heterocyclic Chem. 23 (1986) 1481CrossRefGoogle Scholar
  19. (b).
    B. Burns, R. Grigg, V. Santhakumar, V. Sridharan, P. Stevenson and T. Worakun, Tetrahedron 48 (1992) 7297.CrossRefGoogle Scholar
  20. [12] (a)
    K. Kikukawa, K. Nagira, F. Wada and T. Matsuda, Tetrahedron 37 (1981) 31CrossRefGoogle Scholar
  21. (b).
    K. Kikukawa, K. Nagira, N. Terao, F. Wada and T. Matsuda, Bull. Chem. Soc. Jpn. 52 (1979) 2609CrossRefGoogle Scholar
  22. (c).
    S. Sengupta and S. Bhattacharya, J. Chem. Soc., Perkin Trans. 1 (1993) 1943CrossRefGoogle Scholar
  23. (d).
    K. Kikukawa, K. Maemura, Y. Kiseki, F. Wada, T. Matsudo and C. Giam, J. Org. Chem. 46 (1981) 4885CrossRefGoogle Scholar
  24. (e).
    F. Akiyama, H. Miyazaki, K. Kaneda, S. Teranishi, Y. Fujiwara, M. Abe and H. Taniguchi, J. Org. Chem. 45 (1980) 2359CrossRefGoogle Scholar
  25. (f).
    M. Beller, H. Fischer and K. Kühlein, Tetrahedron Lett. 35 (1994) 8773CrossRefGoogle Scholar
  26. (g).
    M. Beller and K. Kühlein, Synlett (1995) 441.Google Scholar
  27. [13] (a)
    S. Cacchi, E. Morera and G. Ortar, Tetrahedron Lett. 25 (1984) 2271CrossRefGoogle Scholar
  28. (b).
    S. Cacchi, Synthesis (1986) 320Google Scholar
  29. (c).
    S. Cacchi, P.G. Ciattini, E. Morera and G. Ortar, Tetrahedron Lett. 28 (1987) 3039CrossRefGoogle Scholar
  30. (d).
    P.G. Ciattini, E. Morera and G. Ortar, Tetrahedron Lett. 32 (1991) 1579CrossRefGoogle Scholar
  31. (e).
    S. Cacchi, Pure Appl. Chem. 62 (1990) 713Google Scholar
  32. (f).
    Q. Chen and Z. Yang, Tetrahedron Lett. 27 (1986) 1171CrossRefGoogle Scholar
  33. (g).
    Q.-Y. Chen and Y.B. He, Synthesis (1988) 896Google Scholar
  34. (h).
    K. Ritter, Synthesis (1993) 735.Google Scholar
  35. [14]
    H.-U. Blaser and A. Spencer, J. Organomet. Chem. 233 (1982) 267.CrossRefGoogle Scholar
  36. [15]
    R.M. Moriarty, W.R. Epa and A.K. Awasthi, J. Am. Chem. Soc. 113 (1991) 6315.CrossRefGoogle Scholar
  37. [16]
    V.V. Grushin and H. Alper, Chem. Rev. 94 (1994) 1047.CrossRefGoogle Scholar
  38. [17] (a)
    M. Julia, M. Duteil, C. Grard and E. Kuntz, Bull. Soc. Chim. Fr. (1973) 2791Google Scholar
  39. (b).
    K. Kaneda, M. Higushi and T. Imanaka, J. Mol. Catal. 63 (1990) L33.CrossRefGoogle Scholar
  40. [18]
    J.B. Davison, N.M. Simon and S.A. Sojka, J. Mol. Catal. 22 (1984) 394.Google Scholar
  41. [19]
    A. Spencer, J. Organomet. Chem. 270 (1984) 115.CrossRefGoogle Scholar
  42. [20]
    Y. Ben-David, M. Portnoy, M. Gozin and D. Milstein, Organometallics 11 (1992) 1995.CrossRefGoogle Scholar
  43. [21]
    M. Portnoy, Y. Ben-David and D. Milstein, Organometallics 12 (1993) 4734.CrossRefGoogle Scholar
  44. [22]
    W.A. Herrmann, M. Elison, J. Fischer, C. Köcher and G.R.J. Artus, Angew. Chem. 107 (1995) 2602; Angew. Chem. Int. Ed. Engl. 34 (1995) 2371.Google Scholar
  45. [23] (a)
    M. T. Reetz and G. Lohmer, Chem. Commun. (1996) 1921Google Scholar
  46. (b).
    M. Beller, H. Fischer, K. Kühlein, C.-P. Reisinger and W.A. Herrmann, J. Organomet. Chem. 520 (1996) 257.CrossRefGoogle Scholar
  47. [24] (a)
    W.A. Herrmann, C. Broßmer, K. Öfele, M. Beller and H. Fischer, J. Mol. Catal. A 103 (1995) 133CrossRefGoogle Scholar
  48. (b).
    W.A. Herrmann, C. Broßmer, K. Öfele, C.-P. Reisinger, T. Priermeier, M. Beller and H. Fischer, Angew. Chem. 107 (1995) 1989; Angew. Chem. Int. Ed. Engl. 34 (1995) 1844Google Scholar
  49. (c).
    W.A. Herrmann, C. Broßmer, C.-P. Reisinger, T.H. Riermeier, K. Öfele and M. Beller, Chem. Eur. J. in print.Google Scholar
  50. [25]
    Electrochemical investigations by Amatore et al. revealed an acetato-coordinated anionic bis(triphenylphosphine)palladium(0) complex as the active species in the oxidative addition of aryl iodides: C. Amatore, E. Carre, A. Jutand, M.A. M'Barki and G. Meyer, Organometallics 14 (1995) 5605.CrossRefGoogle Scholar
  51. [26]
    D. Kaufmann, C. Hesse and T. Himmler (Bayer AG), EP 0 564 919 A1 (1993).Google Scholar
  52. [27]
    W.J. Scott, J. Chem. Soc., Chem. Commun. (1987) 1755.Google Scholar
  53. [28] (a)
    T.G. Traylor and K.J. Steward, J. Am. Chem. Soc. 108 (1986) 6977CrossRefGoogle Scholar
  54. (b).
    T.G. Traylor and M.J. Goldberg, J. Am. Chem. Soc. 106 (1984) 4445.CrossRefGoogle Scholar
  55. [29]
    J.J. Bozell and C.E. Vogt, J. Am. Chem. Soc. 110 (1988) 2655.CrossRefGoogle Scholar
  56. [30] (a)
    M. Beller, Angew. Chem. 107 (1995) 1436; Angew. Chem. Int. Ed. Engl. 34 (1995) 1316Google Scholar
  57. (b).
    M. Beller and T. Riermeier, in: Organic Synthesis Highlights III, eds. J. Mulzer and H. Waldmann (VCH, Weinheim, 1998, in press)Google Scholar
  58. (c).
    J.F. Hartwig, Synlett (1997) 329Google Scholar
  59. (d).
    N.S. Barta and W.H. Pearson, Chemtracts – Organic Chemistry 9 (1996) 88.Google Scholar
  60. [31]
    M. Kosugi, M. Kameyama and T. Migita, Chem. Lett. (1983) 927.Google Scholar
  61. [32]
    A.S. Guram, R.A. Rennels and S.L. Buchwald, Angew. Chem. 107 (1995) 1456; Angew. Chem. Int. Ed. Engl. 34 (1995) 1348.Google Scholar
  62. [33]
    J. Louie and J.F. Hartwig, Tetrahedron Lett. 36 (1995) 3609.CrossRefGoogle Scholar
  63. [34]
    J.P. Wolfe, S. Wagaw and S.L. Buchwald, J. Am. Chem. Soc. 118 (1996) 7215.CrossRefGoogle Scholar
  64. [35]
    M.S. Driver and J.F. Hartwig, J. Am. Chem. Soc. 118 (1996) 7217.CrossRefGoogle Scholar
  65. [36] (a)
    J.P. Wolfe and S.L. Buchwald, J. Org. Chem. 62 (1997) 1264CrossRefGoogle Scholar
  66. (b).
    J. Louie, M.S. Driver, B.C. Hamann and J.F. Hartwig, J. Org. Chem. 62 (1997) 1268CrossRefGoogle Scholar
  67. (c).
    S. Wagaw and S.L. Buchwald, J. Org. Chem. 61 (1996) 7240.CrossRefGoogle Scholar
  68. [37]
    J.-F. Marcoux, S. Wagaw and S.L. Buchwald, J. Org. Chem. 62 (1997) 1568.CrossRefGoogle Scholar
  69. [38]
    S. Zhao, A.K. Miller, J. Berger and L.A. Flippin, Tetrahedron Lett. 37 (1996) 4463.CrossRefGoogle Scholar
  70. [39] (a)
    Y.D. Ward and V. Farina, Tetrahedron Lett. 37 (1996) 6993CrossRefGoogle Scholar
  71. (b).
    C.A. Willoughby and K.T. Chapman, Tetrahedron Lett. 37 (1996) 7181.CrossRefGoogle Scholar
  72. [40]
    T. Kanbara, A. Honma and K. Hasegawa, Chem. Lett. (1996) 1135.Google Scholar
  73. [41]
    I.P. Beletskaya, A.G. Bessmertnykh and R. Guilard, Tetrahedron Lett. 38 (1997) 2287.CrossRefGoogle Scholar
  74. [42]
    After submission of the manuscript S. L. Buchwald et al. reported an efficient nickel-catalyzed amination protocol for aryl chlorides. J.P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc. 119 (1997) 6054.CrossRefGoogle Scholar
  75. [43]
    M. Beller, T.H. Riermeier, C.-P. Reisinger and W.A. Herrmann, Tetrahedron Lett. 38 (1997) 2073.CrossRefGoogle Scholar
  76. [44] (a)
    H. Heaney, Chem. Rev. 62 (1962) 81CrossRefGoogle Scholar
  77. (b).
    S.V. Kessar, in: Comprehensive Organic Synthesis, Vol. 4, eds. B.M. Trost and I. Flemming (Pergamon Press, Oxford, 1991) 483Google Scholar
  78. (c).
    H. Hart, in: Chemistry of Triple Bonded Functional Groups, Vol. 2, ed. S. Patai (Wiley, Chichester, 1994) 1017.Google Scholar
  79. [45]
    J. Louie and J.F. Hartwig, Angew. Chem. 108 (1996) 2531; Angew. Chem. Int. Ed. Engl. 35 (1996) 2359.Google Scholar
  80. [46]
    E. Negishi, T. Takahashi and K. Akiyoshi, J. Chem. Soc., Chem. Commun. (1986) 1338.Google Scholar
  81. [47] (a)
    C. Amatore, A. Jutand and A. Suarez, J. Am. Chem. Soc. 115 (1993) 9531CrossRefGoogle Scholar
  82. (b).
    C. Amatore, E. Carré, A. Jutand, H. Tanaka, Q. Ren and S. Torii, Chem. Eur. J. 2 (1996) 957.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Thomas H. Riermeier
    • 1
  • Alexander Zapf
    • 1
  • Matthias Beller
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations