Tribology Letters

, Volume 5, Issue 1, pp 103–107

Viscoelastic effects in nanometer‐scale contacts under shear

  • K.J. Wahl
  • S.V. Stepnowski
  • W.N. Unertl
Article

Abstract

We demonstrate the effects of shear modulation on the viscoelastic response of nanometer‐scale single‐asperity contacts under static and dynamic loading conditions. Contact stiffness and relaxation time are determined for contacts to poly(vinylethylene) using a scanning force microscope (SFM). Knowledge of the torsional stiffness κΘ of the SFM cantilever is not required to determine the relaxation time. The relaxation time was several orders of magnitude slower than the bulk relaxation time but decreased slowly to the bulk value as the sample age increased. Contacts showed no evidence of microslip. We show that the shear response observed during the making and breaking of the contacts provides information about the time evolution of the contact area that is not available in force vs. distance curve measurements.

nanotribology viscoelastic contacts shear modulation scanned force microscope single‐asperity contacts poly(vinylethylene) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1950).Google Scholar
  2. [2]
    R. Maboudian and R.T. Howe, J. Vac. Sci. Technol. B 15 (1997) 1.CrossRefGoogle Scholar
  3. [3]
    N.A. Burnham and R.J. Colton, in: Scanning Tunneling Microscopy and Spectroscopy, ed. D.A. Bonnell (VCH, New York, 1993).Google Scholar
  4. [4]
    K. Yamanaka and E. Tomita, Jpn. J. Appl. Phys. 34 (1995) 2879.CrossRefGoogle Scholar
  5. [5]
    J.D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar
  6. [6]
    R.W. Carpick, D.F. Ogletree and M. Salmeron, Appl. Phys. Lett. 70 (1997) 1548.CrossRefGoogle Scholar
  7. [7]
    M.A. Lantz, S.J. O'Shea, A.C.F. Hoole and M.E. Welland, Appl. Phys. Lett. 70 (1997) 970.CrossRefGoogle Scholar
  8. [8]
    M.A. Lantz, S.J. O'Shea, M.E. Welland and K.L. Johnson, Phys. Rev. B 55 (1997) 10776.CrossRefGoogle Scholar
  9. [9]
    G. Luengo, F.J. Schmitt, R. Hill and J. Israelachvili, Macromolecules 30 (1997) 2482.CrossRefGoogle Scholar
  10. [10]
    S. Granick and H.W. Hu, Langmuir 10 (1994) 3857.CrossRefGoogle Scholar
  11. [11]
    J.M. Georges, A. Tonck, J.L. Loubet, D. Mazuyer, E. Georges and F. Sidoroff, J. Phys. II France 6 (1996) 57.CrossRefGoogle Scholar
  12. [12]
    S.R. Cohen, G. Neubauer and G.M. McClelland, J. Vac. Sci. Technol. A 8 (1990) 3449.CrossRefGoogle Scholar
  13. [13]
    N.A. Burnham, G. Gremaud, A.J. Kulik, P.J. Gallo and F. Oulevey, J. Vac. Sci. Technol. B 14 (1996)1308.CrossRefGoogle Scholar
  14. [14]
    K. Tanaka, A. Taura, S.R. Ge, A. Takahara and T. Kajiyama, Macromolecules 29 (1996) 3040.CrossRefGoogle Scholar
  15. [15]
    J. Colmenero, A. Alegria, P.G. Santangelo, K.L. Ngai and C.M. Roland, Macromolecules 27 (1994) 407.CrossRefGoogle Scholar
  16. [16]
    C.M. Roland, Macromolecules 27 (1994) 4242.CrossRefGoogle Scholar
  17. [17]
    Shock and Vibration Handbook, 4th Ed., ed. C.M. Harris (McGraw-Hill, New York, 1996) p. 25.Google Scholar
  18. [18]
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).Google Scholar
  19. [19]
    D.D. Koleske, G.U. Lee, B.I. Gans, K.P. Lee, D.P. DiLella, K.J. Wahl, W.R. Barger, L.J. Whitman and R.J. Colton, Rev. Sci. Instrum. 66 (1995) 4566.CrossRefGoogle Scholar
  20. [20]
    C.J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford, 1993) p. 229.Google Scholar
  21. [21]
    D microlevers, Park Scientific Instruments, Sunnyvale, CA.Google Scholar
  22. [22]
    D.F. Ogletree, R.W. Carpick and M. Salmeron, Rev. Sci. Instrum. 67 (1996) 3298.CrossRefGoogle Scholar
  23. [23]
    J. Colchero, M. Luna and A.M. Barö, Appl. Phys. Lett. 68 (1996) 2896.CrossRefGoogle Scholar
  24. [24]
    T. Baumberger, in: Physics of Sliding Friction, eds. B.N.J. Persson and E. Tosatti (Kluwer Academic, Dordrecht, 1996) p. 1.Google Scholar
  25. [25]
    A.R. Savkoor, in: Fundamentals of Friction: Macroscopic and Microscopic Processes, eds. I.L. Singer and H.M. Pollock (Kluwer Academic, Dordrecht, 1992) p. 111.Google Scholar
  26. [26]
    K.L. Johnson, Proc. Roy. Soc. Lond. A 230 (1955) 531.Google Scholar
  27. [27]
    A.R. Savkoor and G.A.D. Briggs, Proc. Roy. Soc. Lond. A 356 (1977) 103.CrossRefGoogle Scholar
  28. [28]
    J.N. Sneddon, Int. J. Eng. 3 (1965) 47.CrossRefGoogle Scholar
  29. [29]
    D. Maugis, Langmuir 11 (1995) 679.CrossRefGoogle Scholar
  30. [30]
    See, e.g., N.A. Burnham, R.J. Colton and H.M. Pollock, Nanotechnology 4 (1993) 64.CrossRefGoogle Scholar
  31. [31]
    M. Barquins, J. Adhesion 14 (1982) 63.Google Scholar
  32. [32]
    J.P. Aimé, Z. Elkaakour, C. Odin, T. Bouhacina, D. Michel, J. Curély and A. Dautant, J. Appl. Phys. 76 (1994) 754.CrossRefGoogle Scholar
  33. [33]
    K.J. Wahl, S.V. Stepnowski and W.N. Unertl, to be published.Google Scholar
  34. [34]
    T.C.T. Ting, J. Appl. Mech. 33 (1966) 845.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • K.J. Wahl
    • 1
  • S.V. Stepnowski
    • 1
  • W.N. Unertl
    • 1
  1. 1.Code 6170, Naval Research LaboratoryWashington, DCUSA

Personalised recommendations