Mobile Networks and Applications

, Volume 4, Issue 4, pp 301–310 | Cite as

Handover management in Low Earth Orbit (LEO) satellite networks

  • Ian F. Akyildiz
  • Hüseyin Uzunalioğlu
  • Michael D. Bender
Article

Abstract

Low Earth Orbit (LEO) satellite networks will play an important role in the evolving information infrastructure. Satellites in the low earth orbits provide communication with shorter end-to-end delays and efficient frequency usage. However, some problems need to be solved before LEO satellite systems can be successfully deployed. One of these problems is the handover management. The objective of this paper is to survey the basic concepts of LEO satellite networks and the handover research.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Abrishamkar and Z. Siveski, PCS global mobile satellites, IEEE Communications Magazine 34(9) (September 1996) 132–136.Google Scholar
  2. [2]
    A.S. Acampora and M. Naghshineh, An architecture and methodology for mobile-executed handoff in cellular ATM networks, IEEE J. on Selected Areas in Communications 12(8) (October 1994) 1365–1374.Google Scholar
  3. [3]
    B.A. Akyol and D.C. Cox, Rerouting for handoff in a wireless ATM networks, IEEE Personal Communications 3(5) (October 1996) 26–33.Google Scholar
  4. [4]
    J.M. Benedetto, Economy-class ion-defying ICs in orbit, IEEE Spectrum 35(3) (March 1998) 36–41.Google Scholar
  5. [5]
    D. Bertsekas and R. Gallager, Data Networks (Prentice Hall, 1992).Google Scholar
  6. [6]
    H.S. Chang, B.W. Kim, C.G. Lee, Y.H. Choi, S.L. Min, H.S. Yang and C.S. Kim, Topological design and routing for low-earth orbit satellite networks, in: Proc. of IEEE GLOBECOM (1995) pp. 529–535.Google Scholar
  7. [7]
    H.S. Chang, B.W. Kim, C.G. Lee, S.L. Min, Y.H. Choi, H.S. Yang and C.S. Kim, Performance comparison of static routing and dynamic routing in low earth orbit satellite networks, in: IEEE VTC '96 (1996) pp. 1240–1243.Google Scholar
  8. [8]
    G. Comparetto and R. Ramirez, Trends in mobile satellite technology, Computer 30(2) (February 1997) 44–52.Google Scholar
  9. [9]
    S.K. Das, R. Jayaram and S.K. Sen, An optimistic quality of service provisioning scheme for cellular networks, in: Proc. of the 17th Int. Conf. on Distributed Computing Systems (1997) pp. 536–542.Google Scholar
  10. [10]
    E. Del Re, R. Fantacci and G. Giambene, Call blocking performance for dynamic channel allocation technique in future mobile satellite systems, in: IEE Proceedings (1996) pp. 289–296.Google Scholar
  11. [11]
    E. Del Re, R. Fantacci and G. Giambene, Handover requests queueing in low earth orbit mobile satellite systems, in: Proc. of the 2nd European Workshop on Mobile/Personal Satcoms (1996) pp. 213–232.Google Scholar
  12. [12]
    P.R. Giusto and G. Quaglione, Technical alternatives for satellite mobile networks, in: Proc. of the 1st European Workshop on Mobile/Personal Satcoms (1994) pp. 15–27.Google Scholar
  13. [13]
    L.S. Golding and L.C. Palmer, Personal communications by satellite, Int. J. of Satellite Communications 10(5) (September-October 1992) 283–291.Google Scholar
  14. [14]
    J.L. Grubb, IRIDIUM overview, IEEE Communications Magazine 29(11) (1991).Google Scholar
  15. [15]
    D. Hong and S. Rappaport, Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures, IEEE Trans. on Vehicular Technology 35(3) (August 1986) 77–92.Google Scholar
  16. [16]
    Y.C. Hubbel, A comparison of the IRIDIUM and AMPS systems, IEEE Network Magazine 11(2) (March/April 1997) 52–59.Google Scholar
  17. [17]
    A. Jamalipour, Low Earth Orbital Satellites for Personal Communication Networks (Artech House, 1998).Google Scholar
  18. [18]
    D.A. Levine, I.F. Akyildiz and M. Naghshineh, A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept, IEEE/ACM Trans. on Networking 5(1) (February 1997) 1–12.Google Scholar
  19. [19]
    V.H. MacDonald, The cellular concept, The Bell Systems Technical J. 58(1) (January 1979) 15–43.Google Scholar
  20. [20]
    M. Marsan, C.-F. Chiasserini, R. Lo Cigno, M. Munafo and A. Fugamalli, Local and global handovers for mobility management in wireless networks, IEEE Personal Communications 4(5) (October 1997) 16–24.Google Scholar
  21. [21]
    I. Mertzanis, R. Tafazolli and B.G. Evans, Connection admission control strategy and routing considerations in multimedia (non-geo) satellite networks, in: Proc. IEEE VTC '97 (1997) pp. 431–435.Google Scholar
  22. [22]
    B. Miller, Satellite free mobile phone, IEEE Spectrum 35(3) (March 1998) 26–35.Google Scholar
  23. [23]
    M. Naghshineh and M. Schwartz, Distributed call admission control in mobile/wireless networks, IEEE J. on Selected Areas in Communications 14(4) (May 1996) 711–717.Google Scholar
  24. [24]
    C. Oliviera, J.B. Kim and T. Suda, Quality of service guarantee in high speed multimedia wireless networks, in: Proc. IEEE ICC '97 (1997) pp. 728–734.Google Scholar
  25. [25]
    J. Restrepo and G. Maral, Providing appropriate service quality to fixed and mobile users in a non-geo satellite-fixed cell system, in: Proc. of the Second European Workshop on Mobile/Personal Satcoms (1996) pp. 79–96.Google Scholar
  26. [26]
    G. Ruiz, T.L. Doumi and J.G. Gardiner, Teletraffic analysis and simulation of mobile satellite systems, in: IEEE Vehicular Technology Conference (1996) pp. 252–256.Google Scholar
  27. [27]
    G.L. Stüber, Principles of Mobile Communication (Kluwer Academic, 1996).Google Scholar
  28. [28]
    M.A. Sturza, Architecture of the TELEDESIC satellite system, in: Proc. of Int. Mobile Satellite Conf. (1995) pp. 212–218.Google Scholar
  29. [29]
    C.-K. Toh, The design and implementation of a hybrid handover protocol for multimedia wireless LANs, in: Proc. Mobicom '95 (1995) pp. 49–61.Google Scholar
  30. [30]
    H. Uzunalioğlu, Probabilistic routing protocol for low earth orbit satellite networks, in: Proc. of IEEE ICC '98 (1998) pp. 89–93.Google Scholar
  31. [31]
    H. Uzunalioğlu, I.F. Akyildiz, Y. Yesha and W. Yen, Footprint handover rerouting protocol for low earth orbit satellite networks, To appear in Wireless Networks Journal. A preliminary version appeared in the Proc. of ACM/IEEE MOBICOM '97.Google Scholar
  32. [32]
    M. Werner, G. Berndl and B. Edmaier, Performance of optimized routing in LEO intersatellite link networks, in: IEEE VTC '97 (1997) pp. 246–250.Google Scholar
  33. [33]
    M. Werner, C. Delucchi, H.-J. Vogel, G. Maral and J.-J. De Ridder, ATM-based routing in LEO/MEO satellite networks with intersatellite links, IEEE J. on Selected Areas in Communications 15(1) (January 1997) 69–82.Google Scholar
  34. [34]
    M. Werner, A. Jahn, E. Lutz and A. Bottcher, Analysis of system parameters for LEO/ICO-satellite communication networks, IEEE J. on Selected Areas in Communications 13(2) (February 1995) 371–381.Google Scholar
  35. [35]
    R.A. Wiedeman and A.J. Viterbi, The globalstar mobile satellite system for worldwide personal communications, in: Proc. of Int. Mobile Satellite Conf. (1993) pp. 46–49.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Ian F. Akyildiz
    • 1
  • Hüseyin Uzunalioğlu
    • 2
  • Michael D. Bender
    • 3
  1. 1.Broadband and Wireless Networking Laboratory, School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Bell LaboratoriesLucent TechnologiesHolmdelUSA
  3. 3.Department of DefenseFort MeadeUSA

Personalised recommendations