Advertisement

Journal of Mathematical Chemistry

, Volume 25, Issue 1, pp 55–64 | Cite as

Quantum algebraic–combinatoric study of the conformational properties of \(n\)‐alkanes. I

  • Gyula Tasi
  • Fujio Mizukami
Article

Abstract

Based on quantum chemical calculation results, four rules were previously derived for the numbers and the sequences of the conformers of free \(n\)‐alkane molecules. This paper builds up first an algebra to handle the conformational problem of \(n\)‐alkanes. Partitioning the set of all sequences, the whole problem is then subdivided into three independent subcases. With the help of an equivalence relation, the sequences can be classified. According to the quantum chemical rules, certain equivalence classes do not represent conformers. A well‐defined subcase of the whole problem is solved.

Keywords

Physical Chemistry Alkane Equivalence Class Calculation Result Equivalence Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.T. Balaban, Rev. Roum. Chim. 21 (1976) 1049.Google Scholar
  2. [2]
    L.S. Bartell and D.A. Kohl, J. Chem. Phys. 39 (1963) 3097.Google Scholar
  3. [3]
    J. Brunvoll, B.N. Cyvin, E. Brendsdal and S.J. Cyvin, Comput. Chem. 19 (1995) 379.Google Scholar
  4. [4]
    S.J. Cyvin, J. Math. Chem. 17 (1995) 291.Google Scholar
  5. [5]
    S.J. Cyvin, J. Brunvoll, B.N. Cyvin and W. L¨uttke, Z. Naturforsch. 50A (1995) 857.Google Scholar
  6. [6]
    S.J. Cyvin, J. Wang, J. Brunvoll, S. Cao, Y. Li, B.N. Cyvin and Y. Wang, J. Mol. Struct. 413–414 (1997) 227.Google Scholar
  7. [7]
    S. Fitzwater and L.S. Bartell, J. Am. Chem. Soc. 98 (1976) 8338.Google Scholar
  8. [8]
    R.F. Frey, M. Cao, S.Q. Newton and L. Schäfer, J. Mol. Struct. (Theochem) 285 (1993) 99.Google Scholar
  9. [9]
    E. Funck, Z. Elektrochem. 62 (1958) 901.Google Scholar
  10. [10]
    J.M. Goodman, J. Chem. Inf. Comput. Sci. 37 (1997) 876.Google Scholar
  11. [11]
    H. Goto, E. Osawa and M. Yamato, Tetrahedron 49 (1993) 387.Google Scholar
  12. [12]
    W.A. Herrebout, B.J. van der Veken, A. Wang and J.R. Durig, J. Phys. Chem. 99 (1995) 578.Google Scholar
  13. [13]
    W. H¨utner, W. Majer and H. Kästle, Mol. Phys. 67 (1989) 131.Google Scholar
  14. [14]
    G.D. Smith and R.L. Jaffe, J. Phys. Chem. 100 (1996) 18718.Google Scholar
  15. [15]
    G. Tasi and F. Mizukami, J. Chem. Inf. Comput. Sci. 38 (1998) 313.Google Scholar
  16. [16]
    G. Tasi and F. Mizukami, J. Chem. Inf. Comput. Sci. 38 (1998) 632.Google Scholar
  17. [17]
    G. Tasi and F. Mizukami,under preparation.Google Scholar
  18. [18]
    G. Tasi, F. Mizukami and I. Pálinkó, J. Mol. Struct. (Theochem) 401 (1997) 21.Google Scholar
  19. [19]
    G. Tasi, F. Mizukami, I. Pálinkó, J. Csontos, W. Győrffy, P. Nair, K. Maeda, M. Toba, S. Niwa, Y. Kiyozumi and I. Kiricsi, J. Phys. Chem. A 102 (1998) 7698.Google Scholar
  20. [20]
    S. Tsuzuki, L. Schäfer, H. Goto, E.D. Jemmis, H. Hosoya, K. Siam, K. Tanabe and E. Osawa, J. Am. Chem. Soc. 113 (1991) 4665.Google Scholar
  21. [21]
    J. Wang, S. Cao and Y. Li, J. Math. Chem. 20 (1996) 211.Google Scholar
  22. [22]
    K.B. Wiberg and M.A. Murco, J. Am. Chem. Soc. 110 (1988) 8029.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Gyula Tasi
    • 1
    • 2
  • Fujio Mizukami
    • 1
  1. 1.Department of Surface ChemistryNational Institute of Materials and Chemical ResearchIbarakiJapan
  2. 2.Applied Chemistry DepartmentJózsef Attila UniversitySzegedHungary

Personalised recommendations