Numerical Algorithms

, 21:205 | Cite as

Avoiding breakdown in Van der Vorst's method

  • P.R. Graves-Morris
  • A. Salam


Van der Vorst's method is a development of Lanczos' iterative method for the solution of a large sparse system of linear equations. Both methods can suffer from Lanczos breakdown. The usual cure for this problem is a look-ahead method. Recently, the look-around method has been proposed, which tracks the edges of blocks in degenerate cases instead of jumping across them. Here we show how Van der Vorst's minimal residual principle can be built into the look-around method.


  1. [1]
    D.L. Boley, S. Elhay, G.H. Golub and M.H. Gutknecht, Nonsymmetric Lanczos and finding orthogonal polynomials associated with indefinite weights, Numer. Algorithms 1 (1991) 21–43.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    C. Brezinski, A transpose-free “Lanczos-Orthodir” algorithm for linear systems, C. R. Acad. Sci. Paris 324 (1997) 349–354.MATHMathSciNetGoogle Scholar
  3. [3]
    C. Brezinski and M. Redivo-Zaglia, Look-ahead in Bi-CGStab and other product methods for linear systems, BIT 35 (1995) 169–201.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Brezinski, M. Redivo-Zaglia and H. Sadok, Avoiding breakdown and near-breakdown in Lanczos type algorithms, Numer. Algorithms 1 (1991) 261–284.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    C. Brezinski, M. Redivo-Zaglia and H. Sadok, A breakdown-free Lanczos type algorithm for solving linear systems, Numer. Math. 63 (1992) 29–38.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    C. Brezinski, M. Redivo-Zaglia and H. Sadok, New look-ahead Lanczos-type algorithms for linear systems, LMA No. 40, Lúniversit´e du Littoral, preprint (1997); Numer. Math., to appear.Google Scholar
  7. [7]
    C. Brezinski and H. Sadok, Lanczos type algorithms for solving systems of linear equations, Appl. Numer. Math. 11 (1993) 443–473.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    R.W. Freund, E.H. Golub and N.M. Nachtigal, Iterative solution of linear systems, Acta Numerica 1 (1992) 57–100.MathSciNetGoogle Scholar
  9. [9]
    W. Gander, E.H. Golub and D. Gruntz, Solving linear equations by extrapolation, in: Supercomputing, Trondheim (1989), Computer Systems Science, Vol. 62 (Springer, Berlin, 1989) pp. 279–293.Google Scholar
  10. [10]
    W.B. Gragg, Matrix interpretations and applications of the continued fraction algorithm, Rocky Mountain J. Math. 4 (1974) 213–225.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    P.R. Graves-Morris, A “Look-around Lanczos” algorithm for solving a system of linear equations, Numer. Algorithms 15 (1997) 247–274.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    M.H. Gutknecht, Lanczos-type solvers for non-symmetric linear systems of equations, Acta Numerica 6 (1997) 271–397.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    M.H. Gutknecht and M. Hochbruck, Optimised look-ahead recurrences for adjacent rows in the Padé table, BIT 36 (1996) 264–286.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    P.K.W. Vinsome, Orthomin, an iterative method for solving sparse sets of simultaneous linear equations, in: Proc. 4th Symp. on Reservoir Simulation (Society of Petroleum Engineers of AIME, 1976) pp. 149–159.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • P.R. Graves-Morris
    • 1
  • A. Salam
    • 2
  1. 1.School of Computing and MathematicsUniversity of BradfordBradford, West YorkshireUK
  2. 2.Laboratoire de Mathématiques AppliquéesUniversité du LittoralCalaisFrance

Personalised recommendations