Advertisement

Journal of Mathematical Chemistry

, Volume 23, Issue 3–4, pp 309–326 | Cite as

New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals

  • Eric Cancès
  • Benedetta Mennucci
Article

Abstract

We present a new method for solving numerically the equations associated with solvation continuum models, which also works when the solvent is an anisotropic dielectric or an ionic solution. This method is based on the integral equation formalism. Its theoretical background is set up and some numerical results for simple systems are given. This method is much more effective than three‐dimensional methods used so far, like finite elements or finite differences, in terms of both numerical accuracy and computational costs.

Keywords

Liquid Crystal Ionic Solution Integral Equation Method Solvation Free Energy Anisotropic Dielectric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Cammi and J. Tomasi, J. Chem. Phys. 100 (1994) 7495.CrossRefGoogle Scholar
  2. [2]
    E. Cancès and B. Mennucci, J. Chem. Phys., in press.Google Scholar
  3. [3]
    E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys. 107 (1997) 3032.CrossRefGoogle Scholar
  4. [4]
    M. Cossi, B. Mennucci and R. Cammi, J. Comput. Chem. 17 (1996) 57.CrossRefGoogle Scholar
  5. [5]
    W. Hackbusch, Integral Equations – Theory and Numerical Treatment (Birkhäuser, Basel, 1995).Google Scholar
  6. [6]
    B. Mennucci, M. Cossi and J. Tomasi, J. Chem. Phys. 102 (1995) 6837.CrossRefGoogle Scholar
  7. [7]
    B. Mennucci, M. Cossi and J. Tomasi, J. Phys. Chem. 100 (1996) 1807.CrossRefGoogle Scholar
  8. [8]
    S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys. 55 (1981) 117.CrossRefGoogle Scholar
  9. [9]
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347.CrossRefGoogle Scholar
  10. [10]
    K. Sharp, J. Comput. Chem. 12 (1991) 454.CrossRefGoogle Scholar
  11. [11]
    J. Tomasi and M. Persico, Chem. Rev. 94 (1994) 2027.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Eric Cancès
    • 1
  • Benedetta Mennucci
    • 2
  1. 1.CERMICSEcole Nationale des Ponts et ChausséesMarne‐la‐Vallée Cedex 2France
  2. 2.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly

Personalised recommendations