Numerical Algorithms

, 18:209 | Cite as

Numerical integration using sparse grids

  • Thomas Gerstner
  • Michael Griebel


We present new and review existing algorithms for the numerical integration of multivariate functions defined over d-dimensional cubes using several variants of the sparse grid method first introduced by Smolyak [49]. In this approach, multivariate quadrature formulas are constructed using combinations of tensor products of suitable one-dimensional formulas. The computing cost is almost independent of the dimension of the problem if the function under consideration has bounded mixed derivatives. We suggest the usage of extended Gauss (Patterson) quadrature formulas as the one‐dimensional basis of the construction and show their superiority in comparison to previously used sparse grid approaches based on the trapezoidal, Clenshaw–Curtis and Gauss rules in several numerical experiments and applications. For the computation of path integrals further improvements can be obtained by combining generalized Smolyak quadrature with the Brownian bridge construction.

multivariate numerical quadrature Smolyak’s construction sparse grids complexity curse of dimension 65C20 65D30 65D32 65M99 65R20 65U05 65Y20 


  1. [1]
    A.R. Barron, Approximation and estimation bounds for artificial neural networks, Machine Learning 14 (1994) 115–133.zbMATHGoogle Scholar
  2. [2]
    G. Baszenski and F.-J. Delvos, Multivariate Boolean midpoint rules, in: Numerical Integration IV, eds. H. Brass and G. Hämmerlin (Birkhäuser, Basel, 1993) pp. 1–11.Google Scholar
  3. [3]
    T. Bonk, A new algorithm for multi-dimensional adaptive numerical quadrature, in: Adaptive Methods – Algorithms, Theory and Applications, eds. W. Hackbusch and G. Wittum (Vieweg, Braunschweig, 1994) pp. 54–68.Google Scholar
  4. [4]
    H. Brass and K.-J. Förster, On the estimation of linear functionals, Analysis 7 (1987) 237–258.zbMATHMathSciNetGoogle Scholar
  5. [5]
    H.-J. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung, Dissertation, Institut für Informatik, Technische Universität München (1992).Google Scholar
  6. [6]
    R.E. Caflisch, W.J. Morokoff and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance 1 (1997).Google Scholar
  7. [7]
    C.W. Clenshaw and A.R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960) 197–205.zbMATHMathSciNetGoogle Scholar
  8. [8]
    R. Cools and B. Maerten, Experiments with Smolyak’s algorithm for integration over a hypercube, Internal Report, Department of Computer Science, Katholieke Universiteit Leuven (1997).Google Scholar
  9. [9]
    P.J. Davis and P. Rabinowitz, Methods of Numerical Integration (Academic Press, New York, 1975).zbMATHGoogle Scholar
  10. [10]
    F.-J. Delvos, d-variate Boolean interpolation, J. Approx. Theory 34 (1982) 99–114.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    F.-J. Delvos and W. Schempp, Boolean Methods in Interpolation and Approximation, Pitman Research Notes in Mathematics Series, Vol. 230 (Longman, Essex, 1989).zbMATHGoogle Scholar
  12. [12]
    M.G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal. 19 (1982) 1260–1262.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Elhay and J. Kautsky, A method for computing quadratures of the Kronrod–Patterson type, Austral. Comput. Sci. Comm. 6(1) (1984) 15.1–15.8.Google Scholar
  14. [14]
    S. Elhay and J. Kautsky, Generalized Kronrod–Patterson-type imbedded quadratures, Appl. Math. 37(2) (1992) 81–103.zbMATHMathSciNetGoogle Scholar
  15. [15]
    K. Frank and S. Heinrich, Computing discrepancies of Smolyak quadrature rules, J. Complexity 12 (1996).Google Scholar
  16. [16]
    J. Garcke, Berechnung der kleinsten Eigenwerte der stationären Schroedingergleichung mit der Kombinationstechnik, Master’s thesis, Institut für Angewandte Mathematik, Universität Bonn (1998), to appear.Google Scholar
  17. [17]
    A. Genz, A package for testing multiple integration subroutines, in: Numerical Integration, eds. P. Keast and G. Fairweather (Kluwer Academic Publishers, Dordrecht, 1987) pp. 337–340.Google Scholar
  18. [18]
    A. Genz and A.A. Malik, An adaptive algorithm for numerical integration over an n-dimensional rectangular region, J. Comput. Appl. Math. 6 (1980) 295–302.zbMATHCrossRefGoogle Scholar
  19. [19]
    T. Gerstner, Adaptive hierarchical methods for landscape representation and analysis, in: Proc. of the Workshop on Process Modelling and Landform Evolution, eds. S. Hergarten and H. Neugebauer (Springer, Berlin, 1998).Google Scholar
  20. [20]
    G.H. Golub and J. Kautsky, Calculation of Gauss quadratures with multiple free and fixed knots, Numer. Math. 41 (1983) 147–163.zbMATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    W.J. Gordon, Blending function methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Anal. 8 (1971) 158–177.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Griebel, A parallelizable and vectorizable multi-level algorithm on sparse grids, in: Parallel Algorithms for Partial Differential Equations, ed. W. Hackbusch, Notes on Numerical Fluid Mechanics, Vol. 31 (Vieweg, Braunschweig, 1991).Google Scholar
  23. [23]
    M. Griebel, The combination technique for the sparse grid solution of PDEs on multiprocessor machines, Parallel Process. Lett. 2(1) (1992) 61–70.MathSciNetCrossRefGoogle Scholar
  24. [24]
    M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral equations, Numer. Math. (1998), to appear.Google Scholar
  25. [25]
    M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid problems, in: Iterative Methods in Linear Algebra, eds. R. Bequwens and P. de Groen (Elsevier, North-Holland, 1992) pp. 263–281.Google Scholar
  26. [26]
    M. Griebel and G. Zumbusch, Adaptive sparse grids for hyperbolic conservation laws, in: Proc. of the 7th Internat. Conf. on Hyperbolic Problems (Birkhäuser, Basel, 1998).Google Scholar
  27. [27]
    K. Hallatschek, Fouriertransformation auf dünnen Gittern mit hierarchischen Basen, Numer. Math. 63 (1992) 83–97.zbMATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Heuer, M. Maischak and E.P. Stephan, The hp-version of the boundary element method for screen problems, Numer. Math. (1998), submitted.Google Scholar
  29. [29]
    M. Kac, On some connections between probability theory and differential and integral equations, in: Proc. of the 2nd Berkeley Symp. on Math. Stat. Prob., ed. J. Neyman (University of California Press, Berkley, 1951).Google Scholar
  30. [30]
    A.S. Kronrod, Nodes and Weights of Quadrature Formulas (Consultants Bureau, New York, 1965).zbMATHGoogle Scholar
  31. [31]
    H.N. Mhaskar, Neural networks and approximation theory, Neural Networks 9 (1996) 711–722.CrossRefGoogle Scholar
  32. [32]
    G. Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24(2) (1982) 137–158.zbMATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    W.J. Morokoff and R.E. Caflisch, Quasi-Monte Carlo integration, J. Comput. Phys. 122 (1995) 218–230.zbMATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods (SIAM, Philadelphia, PA, 1992).zbMATHGoogle Scholar
  35. [35]
    E. Novak and K. Ritter, Global optimization using hyperbolic cross points, in: State of the Art in Global Optimization, eds. C.A. Floudas and P.M. Pardalos (Kluwer Academic, Dordrecht, 1996) pp. 19–33.Google Scholar
  36. [36]
    E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes, Numer. Math. 75 (1996) 79–97.zbMATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    E. Novak and K. Ritter, The curse of dimension and a universal method for numerical integration, in: Multivariate Approximation and Splines, eds. G. Nürnberger, J.W. Schmidt and G. Walz (1997).Google Scholar
  38. [38]
    E. Novak and K. Ritter, Simple cubature formulas for d-dimensional integrals with high polynomial exactness and small error, Report, Institut für Mathematik, Universität Erlangen–Nürnberg (1997).Google Scholar
  39. [39]
    E. Novak, K. Ritter and A. Steinbauer, A multiscale method for the evaluation of Wiener integrals, J. Approx. Theory (1998), to appear.Google Scholar
  40. [40]
    S. Paskov, Average case complexity of multivariate integration for smooth functions, J. Complexity 9 (1993) 291–312.zbMATHMathSciNetCrossRefGoogle Scholar
  41. [41]
    S. Paskov and J.F. Traub, Faster valuation of financial derivatives, J. Portfolio Management 22 (1995) 113–120.CrossRefGoogle Scholar
  42. [42]
    T.N.L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22 (1968) 847–856.zbMATHCrossRefGoogle Scholar
  43. [43]
    T.N.L. Patterson, Algorithm 672: Generation of interpolatory quadrature rules of the highest degree of precision with preassigned nodes for general weight functions, ACM Trans. Math. Software 15(2) (1989) 137–143.zbMATHMathSciNetCrossRefGoogle Scholar
  44. [44]
    T.N.L. Patterson, Modified optimal quadrature extensions, Numer. Math. 64 (1993) 511–520.zbMATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    S.V. Pereverzev, An estimate of the complexity of the approximate solution of Fredholm equations of the second kind with differentiable kernels, Ukrainian Math. J. 141(2) (1989) 1225–1227.CrossRefGoogle Scholar
  46. [46]
    R. Piessens and M. Branders, A note on the optimum addition of abscissas to quadrature formulas of Gauss and Lobatto type, Math. Comp. 28 (1974) 135–140, 344–347.zbMATHMathSciNetCrossRefGoogle Scholar
  47. [47]
    I. Robinson and A. Begumisa, Suboptimal Kronrod extension formulae for numerical quadrature, Numer. Math. 58 (1991) 807–818.zbMATHMathSciNetGoogle Scholar
  48. [48]
    I.H. Sloan and S. Joe, Lattice Methods for Multiple Integration (Oxford University Press, Oxford, 1994).zbMATHGoogle Scholar
  49. [49]
    S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl. Akad. Nauk SSSR 4 (1963) 240–243.Google Scholar
  50. [50]
    F. Sprengel, Periodic interpolation and wavelets on sparse grids, Numer. Algorithms 17 (1998) 147–169.zbMATHMathSciNetCrossRefGoogle Scholar
  51. [51]
    V.N. Temlyakov, Approximation of Periodic Functions (Nova Science, New York, 1994).zbMATHGoogle Scholar
  52. [52]
    J.F. Traub, G.W. Wasilkowski and H. Wózniakowski, Information-Based Complexity (Academic Press, New York, 1988).zbMATHGoogle Scholar
  53. [53]
    P. Van Dooren and L. De Ridder, An adaptive algorithm for numerical integration over an n-dimensional cube, J. Comput. Appl. Math. 2 (1976) 207–217.zbMATHCrossRefGoogle Scholar
  54. [54]
    G. Wahba, Interpolating surfaces: High order convergence rates and their associated design with applications to X-ray image reconstruction, Report, Department of Statistics, University of Wisconsin, Madison (1978).Google Scholar
  55. [55]
    G.W. Wasilkowski and H. Wózniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity 11 (1995) 1–56.zbMATHMathSciNetCrossRefGoogle Scholar
  56. [56]
    C. Zenger, Sparse grids, in: Parallel Algorithms for Partial Differential Equations, ed. W. Hackbusch, Notes on Numerical Fluid Mechanics, Vol. 31 (Vieweg, Braunschweig, 1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Thomas Gerstner
  • Michael Griebel

There are no affiliations available

Personalised recommendations