Tribology Letters

, Volume 5, Issue 1, pp 91–102 | Cite as

Friction force microscopy investigations of potassium halide surfaces in ultrahigh vacuum: structure, friction and surface modification

  • R.W. Carpick
  • Q. Dai
  • D.F. Ogletree
  • M. Salmeron


Friction force microscopy measurements on the vacuum‐cleaved (001) surfaces of KF, KCl and KBr have been carried out. All surfaces exhibit atomically flat terraces with monatomic steps aligned preferentially along low‐index lattice directions. Stick‐slip lateral forces with the lattice periodicity are observed on all surfaces. Tip‐sample contact creates higher friction domains on the terraces of all three materials. The structure, topography and degree of friction force contrast of these domains is material dependent. The dependence of friction upon load generally does not coincide with the behavior expected for an elastic contact. We propose that the observed domains result from surface structural changes created by low load tip‐sample contact on these relatively soft materials.

force microscopy alkali halide KCl KBr KF friction wear surface structure nanotribology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Binnig, C.F. Quate and C. Gerber, Phys. Rev. Lett. 56 (1986) 930.CrossRefGoogle Scholar
  2. [2]
    R.W. Carpick and M. Salmeron, Chem. Rev. 97 (1997) 1163.CrossRefGoogle Scholar
  3. [3]
    A.M. Stoneham, Cryst. Lattice Defects Amorph. Mater. 14 (1987) 173.Google Scholar
  4. [4]
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals; an Introduction to Modern Structural Chemistry (Cornell University Press, Ithaca, NY, 1960).Google Scholar
  5. [5]
    M.P. Tosi, in: Solid State Physics, Vol. 16, eds. F. Seitz and D. Turnbull (Academic Press, New York, 1964).Google Scholar
  6. [6]
    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: a Handbook (MIT Press, Cambridge, MA, 1971).Google Scholar
  7. [7]
    A. Kelly, Strong Solids (Oxford University Press, London, 1973).Google Scholar
  8. [8]
    M.T. Sprackling, The Plastic Deformation of Simple Ionic Crystals (Academic Press, London, 1976).Google Scholar
  9. [9]
    N. Agraït, G. Rubio and S. Vieira, Phys. Rev. Lett. 74 (1995) 3995.CrossRefGoogle Scholar
  10. [10]
    S. Morita, S. Fujisawa and Y. Sugawara, Surf. Sci. Rep. 23 (1996) 3.CrossRefGoogle Scholar
  11. [11]
    D.F. Ogletree, R.W. Carpick and M. Salmeron, in preparation (1997).Google Scholar
  12. [12]
    L. Howald, R. Lüthi, E. Meyer, G. Gerth, H. Haefke, R. Overney and H.J. Güntherodt, J. Vac. Sci. Technol. B 12 (1994) 2227.CrossRefGoogle Scholar
  13. [13]
    R. Lüthi, E. Meyer, M. Bammerlin, L. Howald, H. Haefke, T. Lehmann, C. Loppacher, H.J. Güntherodt, T. Gyalog and H. Thomas, J. Vac. Sci. Technol. B 14 (1996) 1280.CrossRefGoogle Scholar
  14. [14]
    S. Fujisawa, Y. Sugawara and S. Morita, Philos. Mag. A, Phys. Condens. Matter Struct. Defects Mech. Prop. 74 (1996) 1329.Google Scholar
  15. [15]
    J.B. Pethica and A.P. Sutton, J. Vac. Sci. Technol. A 6 (1988) 2494.CrossRefGoogle Scholar
  16. [16]
    F.J. Giessibl, Science 267 (1995) 68.Google Scholar
  17. [17]
    M. Bammerlin, R. Lüthi, E. Meyer, A. Baratoff, J. Lü, M. Guggisberg, C. Gerber, L. Howald, H. Haefke and H.J. Güntherodt, Probe Microscopy 1 (1997) 3.Google Scholar
  18. [18]
    Optovac, North Brookfield, MA.Google Scholar
  19. [19]
    Prof. M. DeLong, Dept. of Physics, University of Utah.Google Scholar
  20. [20]
    Sharpened Microlever type E, Park Scientific Instruments, Sunnyvale, CA.Google Scholar
  21. [21]
    D.F. Ogletree, R.W. Carpick and M. Salmeron, Rev. Sci. Instrum. 67 (1996) 3298.CrossRefGoogle Scholar
  22. [22]
    Q. Dai, R. Vollmer, R.W. Carpick, D.F. Ogletree and M. Salmeron, Rev. Sci. Instrum. 66 (1995) 5266.CrossRefGoogle Scholar
  23. [23]
    S.S. Sheiko, M. Möller, E.M.C.M. Reuvekamp and H.W. Zandbergen, Phys. Rev. B 48 (1993) 5675.CrossRefGoogle Scholar
  24. [24]
    RW. Carpick, N. Agraït, D.F. Ogletree and M. Salmeron, J. Vac. Sci. Technol. B 14 (1996) 1289.CrossRefGoogle Scholar
  25. [25]
    R.W. Carpick, N. Agraït, D.F. Ogletree and M. Salmeron, Langmuir 12 (1996) 3334.CrossRefGoogle Scholar
  26. [26]
    M. Luna, N.A. Melman, F. Rieutord, Q. Dai, D.F. Ogletree and M. Salmeron, J. Phys. Chem. (1997), submitted.Google Scholar
  27. [27]
    R. Lüthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, M. Guggisberg, M. Bammerlin and H.J. Güntherodt, Surf. Sci. 338 (1995) 247.CrossRefGoogle Scholar
  28. [28]
    C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton and C.M. Lieber, Science 265 (1994) 2071.Google Scholar
  29. [29]
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).Google Scholar
  30. [30]
    J. Hu, X.D. Xiao, D.F. Ogletree and M. Salmeron, Surf. Sci. 327 (1995) 358.CrossRefGoogle Scholar
  31. [31]
    K.L. Johnson, K. Kendall and A.D. Roberts, Proc. Roy. Soc. Lond. A 324 (1971) 301.CrossRefGoogle Scholar
  32. [32]
    D. Maugis, J. Colloid Interface Sci. 150 (1992) 243.CrossRefGoogle Scholar
  33. [33]
    D.K. Rowell and M.J.L. Sangster, J. Phys. C (Sol. State Phys.) 14 (1981) 2909.CrossRefGoogle Scholar
  34. [34]
    R.M. Wilson and R.T. Williams, Nucl. Instrum. Methods Phys. Res. 101 (1995) 122.CrossRefGoogle Scholar
  35. [35]
    A.L. Shluger, R.T. Williams and A.L. Rohl, Surf. Sci. 343 (1995) 273.CrossRefGoogle Scholar
  36. [36]
    A.L. Shluger, A.L. Rohl, R.T. Williams and R.M. Wilson, Phys. Rev. B 52 (1995) 11398.CrossRefGoogle Scholar
  37. [37]
    E. Meyer, R. Lüthi, L. Howald, M. Bammerlin, M. Guggisberg and H.J. Güntherodt, J. Vac. Sci. Technol. B 14 (1996) 1285.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • R.W. Carpick
    • 1
  • Q. Dai
    • 1
  • D.F. Ogletree
    • 1
  • M. Salmeron
    • 1
  1. 1.Materials Sciences Division, Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations