Catalysis Surveys from Japan

, Volume 4, Issue 1, pp 3–15 | Cite as

Methane conversion by various metal, metal oxide and metal carbide catalysts

  • Shuichi Naito
Article

Abstract

The progress in the field of methane conversion into higher hydrocarbons including aromatics and oxygenated compounds in the recent five years will be reviewed shortly, together with a new type of the methane conversion reaction with carbon monoxide at lower temperatures (600–700 K) by supported group VIII metal catalysts. Benzene was formed selectively among hydrocarbons in the CH4–CO reaction over silica-supported Rh, Ru, Pd and Os catalysts under atmospheric pressure. Both CH4 and CO were required for benzene formation, and only ethane and ethylene were formed besides benzene. The amount of C3–C5 hydrocarbons was negligible, which suggests that a completely different mechanism from the CO–H2 reaction may be operating over these catalysts despite of the similarity in the reaction conditions with the CO–H2 reaction. The mechanism of benzene formation was studied deeply by means of kinetical investigation as well as infrared spectroscopy and isotopic tracer method in connection with that of CO hydrogenation.

methane conversion metal metal oxide metal carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.G. Sault and D.W. Goodman, Adv. Chem. Phys. 76 (1989) 153.Google Scholar
  2. [2]
    G.R. Schoofs, C.R. Arumainayagam, M.C. McMaster and R.J. Madix, Surf. Sci. 215 (1989) 1.Google Scholar
  3. [3]
    B.D. Kay and M.E. Coltrin, Surf. Sci. 198 (1988) L375.Google Scholar
  4. [4]
    D.J. Trevor, D.M. Cox and A.J. Kaldor, J. Am. Chem. Soc. 112 (1990) 3742.Google Scholar
  5. [5]
    E.G.M. Kuijpers, A.K. Breedijk, van der Wal and J.W. Geus, J. Catal. 72 (1981) 210.Google Scholar
  6. [6]
    S. Naito, T. Karaki and T. Iritani, Chem. Lett. (1997) 877.Google Scholar
  7. [7]
    S. Naito, T. Karaki, T. Iritani and M. Kumano, Stud. Surf. Sci. Catal. 119 (1998) 265.Google Scholar
  8. [8]
    Y. Tsuji, T. Miyao and S. Naito, Catal. Lett. 69 (2000) 195.Google Scholar
  9. [9]
    J.R. R.-Nielsen and J.H. Bak Hansen, J. Catal. 144 (1993) 38.Google Scholar
  10. [10]
    S.C. Tsang, J.B. Claridge and M.L.H. Green, Catal. Today 23 (1995) 3.Google Scholar
  11. [11]
    O. Yamazaki, K. Tomishige and K. Fujimoto, Appl. Catal. 136 (1996) 49.Google Scholar
  12. [12]
    M. Prettre, C.H. Eichner and M. Perrin, Trans. Faraday Soc. 43 (1946) 335.Google Scholar
  13. [13]
    D. Dissanayake, M.P. Rosynek, K.C.C. Kharas and J.H. Lunsford, J. Catal. 132 (1991) 117.Google Scholar
  14. [14]
    D.A. Hickman and L.D. Schmidt, Science 259 (1993) 343.Google Scholar
  15. [15]
    C.T. Au and H.Y. Wang, Catal. Lett. 41 (1996) 159.Google Scholar
  16. [16]
    R. Shiozaki, A.G. Anderson, T. Hayakawa, S. Hamakawa, K. Suzuki, M. Shimizu and K. Takehira, J. Chem. Soc., Faraday Trans. 93 (1997) 3235.Google Scholar
  17. [17]
    M.F. Mark and F. Maier, J. Catal. 164 (1996) 122.Google Scholar
  18. [18]
    A. Erdohelyi, J. Cserenyi and F. Solymosi, J. Catal. 141 (1993) 287.Google Scholar
  19. [19]
    M.C. Bradford and M.A. Vannice, Appl. Catal. A 142 (1996) 97.Google Scholar
  20. [20]
    M.C. Bradford and M.A. Vannice, J. Catal. 173 (1998) 157.Google Scholar
  21. [21]
    E. Ruckenstein and Y.H. Hu, J. Catal. 162 (1996) 230.Google Scholar
  22. [22]
    A. Slagtern, Y. Schuurman, C. Leclercq, X. Verykios and C. Mirodatos, J. Catal. 172 (1997) 118.Google Scholar
  23. [23]
    J.H. Bitter, K. Sesham and J.A. Lercher, J. Catal. 171 (1997) 279.Google Scholar
  24. [24]
    J.H. Bitter, K. Sesham and J.A. Lercher, J. Catal. 176 (1998) 93.Google Scholar
  25. [25]
    Z. Zhang, X.E. Verykios, S.M. MacDonald and S. Affrossman, J. Phys. Chem. 100 (1996) 744.Google Scholar
  26. [26]
    Z.L. Zhang, V.A. Tsipouriari, A.M. Efstathiou and X.E. Verykios, J. Catal. 158 (1996) 51.Google Scholar
  27. [27]
    A.M. Efstathiou, A. Kladi, V.A. Tsipouriari and X.E. Verykios, J. Catal. 158 (1996) 64.Google Scholar
  28. [28]
    J.B. Claridge, A.P.E. York, A.J. Bruags, C. M.-Alvares, J. Sloan, S.C. Tsang and M.L.H. Green, J. Catal. 189 (1998) 85.Google Scholar
  29. [29]
    G.E. Keller and M.M. Bhasin, J. Catal. 73 (1982) 9.Google Scholar
  30. [30]
    A.L. Tonkovich, R.W. Carr and R. Aris, Science 262 (1993) 221.Google Scholar
  31. [31]
    Y. Jiang, I.V. Yentekakis and C.G. Vayenas, Science 264 (1994) 1563.Google Scholar
  32. [32]
    Ye Wang and K. Otsuka, J. Catal. 155 (1995) 256.Google Scholar
  33. [33]
    K. Aoki, M. Ohmae, T. Nanba, T. Takeishi, N. Azuma, A. Ueno, H. Ohfune, H. Hayashi and Y. Udagawa, Catal. Today 45 (1998) 29.Google Scholar
  34. [34]
    M. Belgued, P. Pareja, A. Amariglio and H. Amariglio, Nature 352 (1991) 789.Google Scholar
  35. [35]
    T. Koerts, M.J.A.G. Deelen and R.A. van Santen, J. Catal. 138 (1992) 101.Google Scholar
  36. [36]
    M. Belgued, A. Amariglio, P. Pareja and H. Amariglio, J. Catal. 159 (1996) 441, 449.Google Scholar
  37. [37]
    D. Wang, J.H. Lunsford and M. Rosynek, J. Catal. 169 (1997) 347.Google Scholar
  38. [38]
    B.M. Weckhuysen, D. Wang, M.P. Rosynek and J.H. Lunsford, J. Catal. 175 (1998) 338, 347.Google Scholar
  39. [39]
    L.S. Wang, L.X. Tao, M.S. Xie, G.F. Xu, J.S. Huag and Y.D. Xu, Catal. Lett. 21 (1993) 35.Google Scholar
  40. [40]
    L. Wang, Y. Xu, S.-T. Wang, W. Cui and X. Guo, Appl. Catal. A 152 (1997) 173.Google Scholar
  41. [41]
    Y. Shu, Y. Xu, S.-T.Wang, L. Wang and X. Guo, J. Catal. 170 (1997) 11.Google Scholar
  42. [42]
    F. Solymosi, A. Erdohelyi and A. Szoke, Catal. Lett. 32 (1995) 43.Google Scholar
  43. [43]
    F. Solymosi, A. Szoke and J. Cserenyi, Catal. Lett. 39 (1996) 157.Google Scholar
  44. [44]
    F. Solymosi, J. Cserenyi, A. Szoke, T. Bansagi and A. Oszko, J. Catal. 165 (1997) 150.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Shuichi Naito

There are no affiliations available

Personalised recommendations