Advertisement

Catalysis Letters

, Volume 68, Issue 1–2, pp 45–48 | Cite as

Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al2O3 catalyst

  • Ching-Shiun Chen
  • Wu-Hsun Cheng
  • Shou-Shiun Lin
Article

Abstract

The mechanism of the reverse water–gas shift reaction over a Cu catalyst was studied by CO2 hydrogenation, temperature-programmed reduction of the Cu catalyst and pulse reaction with QMS monitoring. In comparison with the reaction of CO2 alone, hydrogen can significantly promote the CO formation in the RWGS reaction. The formate derived from association of H2 and CO2 is proposed to be the key intermediate for CO production. Formate dissociation mechanism is the major reaction route for CO production. Cu(I) species were formed from the oxidation of Cu0 associated with CO2 dissociation.

reverse water–gas shift temperature-programmed reduction copper catalysts formate mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.S. Nam, K.W. Jun, M.J. Choi, G. Kishan and K.W. Lee, Appl. Catal. 186 (1999) 201.CrossRefGoogle Scholar
  2. [2]
    S.S. Nam, H. Kim, G. Kishan, M.J. Choi and K.W. Lee, Appl. Catal. 179 (1999) 155.CrossRefGoogle Scholar
  3. [3]
    K.H. Ernst, C.T. Campbell and G. Moretti, J. Catal. 134 (1992) 66.CrossRefGoogle Scholar
  4. [4]
    S.I. Fujita, M. Usui and N. Takezawa, J. Catal. 134 (1992) 220.CrossRefGoogle Scholar
  5. [5]
    M.J.L. Ginés, A.J. Marchi and C.R. Apesteguía, Appl. Catal. 154 (1997) 155.CrossRefGoogle Scholar
  6. [6]
    M.S. Spencer, Catal. Lett. 32 (1995) 9.CrossRefGoogle Scholar
  7. [7]
    J. Nakamura, J.M. Campbell and C.T. Campbell, J. Chem. Soc. Faraday Trans. 86 (1990) 2725.CrossRefGoogle Scholar
  8. [8]
    E. Iglesia and M. Boudart, J. Catal. 81 (1983) 214.CrossRefGoogle Scholar
  9. [9]
    J. Yoshihara, S.C. Parker, A. Schafer and C.T. Campbell, Catal. Lett. 31 (1995) 313.CrossRefGoogle Scholar
  10. [10]
    T. Shido and Y. Iwasawa, J. Catal. 140 (1993) 575.CrossRefGoogle Scholar
  11. [11]
    C.T. Campbell and K.A. Daube, J. Catal. 104 (1987) 109.CrossRefGoogle Scholar
  12. [12]
    Q. Sun, C.W. Liu, W. Pan, Q.M. Zhu and J.F. Deng, Appl. Catal. 171 (1998) 301.CrossRefGoogle Scholar
  13. [13]
    T. Salmi and R. Hakkarainen, Appl. Catal. 49 (1989) 285.CrossRefGoogle Scholar
  14. [14]
    D.C. Grenoble, M.M. Estadt and D.F. Ollis, J. Catal. 67 (1981) 90.CrossRefGoogle Scholar
  15. [15]
    C.J.G. van der Grift, A.F.H. Wielers, B.P.J. Joghi, J.V. Beijnum, M.E. Boer, M.V. Helder and J.W. Geus, J. Catal. 131 (1991) 178.CrossRefGoogle Scholar
  16. [16]
    D.B. Clarke and A.T. Bell, J. Catal. 154 (1995) 314.CrossRefGoogle Scholar
  17. [17]
    J. Yoshihara and C.T. Campbell, J. Catal. 161 (1996) 776.CrossRefGoogle Scholar
  18. [18]
    I.A. Fisher, H.C. Woo and A.T. Bell, Catal. Lett. 44 (1997) 11.CrossRefGoogle Scholar
  19. [19]
    J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito and T. Fujitani, Catal. Lett. 31 (1995) 325.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ching-Shiun Chen
    • 1
  • Wu-Hsun Cheng
    • 1
  • Shou-Shiun Lin
    • 1
  1. 1.Department of Chemical and Materials EngineeringChang Gung UniversityTao-YuanTaiwan, ROC

Personalised recommendations