Catalysis Letters

, Volume 68, Issue 1–2, pp 85–93 | Cite as

Statistical analysis of Al distributions and metal ion pairing probabilities in zeolites

  • B.R. Goodman
  • K.C. Hass
  • W.F. Schneider
  • J.B. Adams
Article

Abstract

The distributions of Al tetrahedral sites are studied as a function of Si : Al ratio (from 11 to 95) in three zeolites: ZSM-5, ferrierite, and mordenite. Al configurations obeying Loewenstein’s rule are generated by a Monte Carlo procedure and analyzed in terms of accessibility to specific channels. The distribution of pairs of Al sites accessible to the same channel segregates into distinct nearest-neighbor and ring-bridging types. Such pairs provide favorable binding environments for extraframework MOxM2+ cations in the metal-ion-exchanged forms of the zeolites. In all three zeolites, the probability of a given Al site having at least one suitable partner for pairing within 8.5 Å is close to unity for typical Si : Al ratios. The probability at shorter distances is more sensitive to the zeolite structure, reflecting the larger number of highly puckered five- and six-membered rings in ZSM-5. This sensitivity, and its implications for CuOxCu2+ formation in the three Cu-exchanged forms, may explain why Cu-ZSM-5 is the most active of the three for catalytically decomposing NO.

zeolites Al pairs Cu oxocations ZSM-5 mordenite ferrierite Monte Carlo sampling NO decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Shelef, Chem. Rev. 95 (1995) 209.CrossRefGoogle Scholar
  2. [2]
    D.-J. Liu and J. Robota, Catal. Lett. 21 (1993) 291.CrossRefGoogle Scholar
  3. [3]
    J. Dedecek, Z. Sobalik, Z. Tvaruzkova, D. Kaucky and B. Wichterlova, J. Phys. Chem. 99 (1995) 16327.CrossRefGoogle Scholar
  4. [4]
    H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya, M. Anpo and M. Che, J. Phys. Chem. 100 (1996) 397.CrossRefGoogle Scholar
  5. [5]
    J. Dedecek and B. Wichterlova, J. Phys. Chem. B 101 (1997) 10233.CrossRefGoogle Scholar
  6. [6]
    B. Wichterlova, J. Dedecek, Z.Z. Sobalik, A. Vondrova and K. Klier, J. Catal. 169 (1997) 194.CrossRefGoogle Scholar
  7. [7]
    C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic and M. Bellatreccia, J. Phys. Chem. B 101 (1997) 344.CrossRefGoogle Scholar
  8. [8]
    W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. 100 (1996) 6032.CrossRefGoogle Scholar
  9. [9]
    B.L. Trout, A.K. Chakraborty and A.T. Bell, J. Phys. Chem. 100 (1996) 4173.CrossRefGoogle Scholar
  10. [10]
    H.V. Brand, A. Redondo and P.J. Hay, J. Phys. Chem. B 101 (1997) 7691.CrossRefGoogle Scholar
  11. [11]
    X.B. Feng and W.K. Hall, Catal. Lett. 46 (1997) 11.CrossRefGoogle Scholar
  12. [12]
    T.V. Voskoboinikov, H.Y. Chen and W.M.H. Sachtler, Appl. Catal. B 19 (1998) 279.CrossRefGoogle Scholar
  13. [13]
    H.Y. Chen and W.M.H. Sachtler, Catal. Today 42 (1998) 73.CrossRefGoogle Scholar
  14. [14]
    B.R. Goodman, W.F. Schneider, K.C. Hass and J.B. Adams, Catal. Lett. 56 (1998) 183.CrossRefGoogle Scholar
  15. [15]
    B.R. Goodman, K.C. Hass, W.F. Schneider and J.B. Adams, J. Phys. Chem. B 103 (1999) 10452.CrossRefGoogle Scholar
  16. [16]
    D.C. Sayle, M.A. Perrin, P. Nortier and C.R.A. Catlow, J. Chem. Soc. Faraday Trans. (1995) 945.Google Scholar
  17. [17]
    D.C. Sayle, C.R.A. Catlow, J.D. Gale, M.A. Perrin and P. Nortier, J. Mater. Chem. 7 (1997) 1635.CrossRefGoogle Scholar
  18. [18]
    D.C. Sayle, C.R.A. Catlow, J.D. Gale, M.A. Perrin and P. Nortier, J. Phys. Chem. 101 (1997) 3331.Google Scholar
  19. [19]
    H. Hamada, N. Matsubayashi, H. Shimada, Y. Kintaichi, T. Ito and A. Nishijima, Catal. Lett. 5 (1990) 189.CrossRefGoogle Scholar
  20. [20]
    W. Grunert, N.W. Hayes, R.W. Joyner, E.S. Shpiro, M.R.H. Siddiqui and G.N. Baeva, J. Phys. Chem. 98 (1994) 10832.CrossRefGoogle Scholar
  21. [21]
    E.S. Shpiro, R.W. Joyner, W. Grunert, N.W. Hayes, M.R.H. Siddiqui and G.N. Baeva, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1994) p. 1483.Google Scholar
  22. [22]
    Y. Kuroda, R. Kumashiro, T. Yoshimoto and M. Nagao, Phys. Chem. Chem. Phys. 1 (1999) 649.CrossRefGoogle Scholar
  23. [23]
    M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, J. Phys. Chem. 95 (1991) 3727.CrossRefGoogle Scholar
  24. [24]
    J. Sarkany, J.L. d'Itri and W.M.H. Sachtler, Catal. Lett. 16 (1992) 241.CrossRefGoogle Scholar
  25. [25]
    M.C. Campa, V. Indovina, G. Minelli, G. Moretti, I. Pettiti, P. Porta and A. Riccio, Catal. Lett. 23 (1994) 141.Google Scholar
  26. [26]
    G. Moretti, Catal. Lett. 23 (1994) 135.CrossRefGoogle Scholar
  27. [27]
    G. Moretti, Catal. Lett. 28 (1994) 143.CrossRefGoogle Scholar
  28. [28]
    J. Valyon and W.K. Hall, J. Phys. Chem. 97 (1993) 1204.CrossRefGoogle Scholar
  29. [29]
    W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. B 102 (1998) 3692.CrossRefGoogle Scholar
  30. [30]
    K.C. Hass and W.F. Schneider, Phys. Chem. Chem. Phys. 1 (1999) 639.CrossRefGoogle Scholar
  31. [31]
    M.J. Rice, N.O. Gonzales, A.K. Chakraborty and A.T. Bell, in: 12th Int. Zeolite Conf. (MRS, 1999) p. 393.Google Scholar
  32. [32]
    P. Nachtigall, D. Nachtigallová and J. Sauer, J. Phys. Chem. B 104 (2000) 1738.CrossRefGoogle Scholar
  33. [33]
    M.H.W. Sonnemans, C. den Heijer and M. Crocker, J. Phys. Chem. 97 (1993) 440.CrossRefGoogle Scholar
  34. [34]
    C.J.J. den Ouden, R.A. Jackson, C.R.A. Catlow and M.F.M. Post, J. Phys. Chem. 94 (1990) 5286.CrossRefGoogle Scholar
  35. [35]
    W. Loewenstein, Am. Mineral. 39 (1954) 92.Google Scholar
  36. [36]
    M.J. Rice, A.K. Chakraborty and A.T. Bell, J. Catal. 186 (1999) 222.CrossRefGoogle Scholar
  37. [37]
    A. Dyer, An Introduction to Zeolite Molecular Sieves (Wiley, Chichester, 1988).Google Scholar
  38. [38]
    W.M. Meier, D.H. Olson and C. Baerlocher, Atlas of Zeolite Structure Type (Elsevier, New York, 1996).Google Scholar
  39. [39]
    Y. Li and W.K. Hall, J. Catal. 129 (1991) 202.CrossRefGoogle Scholar
  40. [40]
    J.N. Armor, Appl. Catal. B 4 (1994) 18.CrossRefGoogle Scholar
  41. [41]
    C.Y. Lee, K.Y. Choi and B.H. Ha, Appl. Catal. B 5 (1994) 7.CrossRefGoogle Scholar
  42. [42]
    T. Cheung, S.K. Bhargava, M. Hobday and K. Foger, J. Catal. 158 (1996) 301.CrossRefGoogle Scholar
  43. [43]
    G. Ricchiardi and J.M. Newsam, J. Phys. Chem. B 101 (1997) 9943.CrossRefGoogle Scholar
  44. [44]
    K.P. Schröder and J. Sauer, J. Phys. Chem. 97 (1993) 6579.CrossRefGoogle Scholar
  45. [45]
    D.E. Knuth, The Art of Computer Programming (Addison-Wesley, Reading, MA, 1981) ch. 3.Google Scholar
  46. [46]
    W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1992).Google Scholar
  47. [47]
    R.V. Hogg and E.A. Tanis, Probability and Statistical Inference (Macmillan, New York, 1993).Google Scholar
  48. [48]
    Y.J. Huang and H.P. Wang, J. Phys. Chem. A 103 (1999) 6514.CrossRefGoogle Scholar
  49. [49]
    Y. Kuroda, A. Kotani, H. Maeda, H. Moriwaki, T. Morimato and M. Nagao, J. Chem. Soc. Faraday Trans. 88 (1992) 1583.CrossRefGoogle Scholar
  50. [50]
    R. Pirone, P. Ciambelli, G. Moretti and G. Russo, Appl. Catal. B 8 (1996) 197.CrossRefGoogle Scholar
  51. [51]
    R. Pirone, E. Garufi, P. Ciambelli, G. Moretti and G. Russo, Catal. Lett. (1997) 255.Google Scholar
  52. [52]
    G. Moretti, C. Dossi, A. Fusi, S. Recchia and R. Psaro, Appl. Catal. B 20 (1999) 67.CrossRefGoogle Scholar
  53. [53]
    C. Dossi, A. Fusi, S. Reccia, R. Psaro and G. Moretti, Micropor. Mesopor. Mater. 30 (1999) 165.CrossRefGoogle Scholar
  54. [54]
    M.P. Attfield, S.J. Weigel and A.K. Cheetham, J. Catal. 170 (1997) 227.CrossRefGoogle Scholar
  55. [55]
    D.C. Sayle, C.R.A. Catlow, M.A. Perrin and P. Nortier, J. Mater. Chem. 7 (1997) 1917.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • B.R. Goodman
    • 1
  • K.C. Hass
    • 1
  • W.F. Schneider
    • 1
  • J.B. Adams
    • 2
  1. 1.Ford Research LaboratoryDearbornUSA
  2. 2.Department of Chemical, Bio and Materials EngineeringArizona State UniversityTempeUSA

Personalised recommendations