Catalysis Letters

, Volume 45, Issue 1–2, pp 1–3 | Cite as

Nitride and carbide of molybdenum and tungsten as substitutes of iridium for the catalysts used for space communication

  • J.A.J. Rodrigues
  • G.M. Cruz
  • G. Bugli
  • M. Boudart
  • G. Djéga-Mariadassou


Satellites are equipped with microthrusters that control their orbit and attitude. The thrust is achieved by the catalytic decomposition of hydrazine by iridium supported on alumina. As nitrides and carbides of molybdenum and tungsten behave like noble metals in many catalytic reactions, they were tried in a 2 newton hydrazine microthruster. Their performance was similar to that of the iridium catalyst, with respect to ignition delay and thrust. Their mechanical resistance appears higher than that of iridium-based catalyst. This application is the first practical one for nitrides and carbides of early transition metals as substitutes of noble metals, a possibility first reported in 1973.


Carbide Hydrazine Iridium Tungsten Carbide Ignition Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.B. Levy and M. Boudart, Science 181 (1973) 547.Google Scholar
  2. [2]
    S.T.Oyama and M. Boudart, J.Res. Inst. Catal. 28 (1980) 305.Google Scholar
  3. [3]
    M. Boudart, S.T. Oyama and L. Leclercq, in: Proc. 7th Int. Congr. on Catalysis, Vol. 1, eds. T. Seiyama and K. Tanabe (Kodansha, Tokyo, 1981) pp. 578–590.Google Scholar
  4. [4]
    L. Volpe and M. Boudart, J. Solid StateChem. 59 (1985) 332.CrossRefGoogle Scholar
  5. [5]
    L. Volpe and M. Boudart, J. Solid StateChem. 59 (1985) 348.CrossRefGoogle Scholar
  6. [6]
    L. Volpe and M. Boudart,Catal.Rev. Sci. Eng. 27 (1985) 514.Google Scholar
  7. [7]
    G.W. Haddix, A.T. Bell and J.A. Reimer, Catal. Lett. 1 (1988) 207.CrossRefGoogle Scholar
  8. [8]
    J.S. Lee and M. Boudart,Catal. Lett. 8 (1991) 107.CrossRefGoogle Scholar
  9. [9]
    F.H. Ribeiro, R.A. Dalla Betta, G.J. Guskey and M. Boudart, Chem.Mater. 3 (1991) 805.Google Scholar
  10. [10]
    S.T. Oyama, J. Solid State Chem. 96 (1992) 442.CrossRefGoogle Scholar
  11. [11]
    E. Iglesia, F.H. Ribeiro, M. Boudart and J.E. Baumgartner,Catal. Today 15 (1992) 307.CrossRefGoogle Scholar
  12. [12]
    J.G. Choi, J.R. Brenner, C.W. Colling, B.G. Demczyk, J.L.Dunning and L.T. Thompson, Catal. Today 15 (1992) 201.CrossRefGoogle Scholar
  13. [13]
    H.Abe and A.T. Bell,Catal. Lett. 18 (1993) 1.CrossRefGoogle Scholar
  14. [14]
    P. Wehrer, P. Vennegues, J.-M. Bastin and G. Maire, Ann. Chim. Fr. 18 (1993) 129.Google Scholar
  15. [15]
    E.A. Mazulevskii, V.Sh. Palanker, E.N. Baibatyrov, A.M. Khisametdinov and E.I.Domanovskaya, Kinet. iKatal. 18 (1977) 767.Google Scholar
  16. [16]
    J.A.J. Rodrigues, G.M. Cruz and G. Dj_ega-Mariadassou, 8° Seminário Brasileiro deCatálise, 14 September 1995,RJ, Brazil.Google Scholar
  17. [17]
    W.L. Petty, Technical Report AD-769 888 (Shell Development Company, Texas, 1973).Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • J.A.J. Rodrigues
  • G.M. Cruz
  • G. Bugli
  • M. Boudart
  • G. Djéga-Mariadassou

There are no affiliations available

Personalised recommendations