Catalysis Letters

, Volume 58, Issue 4, pp 217–223 | Cite as

Influence of electronic properties of Na2O/CaO catalysts on their catalytic characteristics for the oxidative coupling of methane

  • E.V. Kondratenko
  • D. Wolf
  • M. Baerns


For Na2O/CaO catalysts of different sodium content the adsorption of oxygen and their electrical properties were studied by transient experiments and measurements of contact potential differences (CPD) as well as electrical conductivity. CPD results show a change of the mechanism of oxygen activation with increasing sodium concentration due to changing the type of ionic conductivity from cationic to anionic. Anion vacancies are formed by incorporation of sodium into the CaO lattice. As CPDs show, the cation conductivity promotes an accumulation of oxygen species on the catalyst surface resulting in a decrease of C2 product selectivity for the catalyzed oxidative coupling of methane. The anion conductivity favors a dissociation of molecular adsorbed oxygen and a subsequent incorporation into the oxide lattice, hereby, decreasing its concentration on the catalyst surface which favors in term selective formation of ethane and ethylene.

oxidative coupling of methane work function as mean of catalyst‐surface characterization electrical conductivity of Na2O‐doped calcium oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.E. Keller and M.M. Bhasin, J. Catal. 73 (1982) 9.CrossRefGoogle Scholar
  2. [2]
    (a) W. Hinsen and M. Baerns, Chem. Zeitung 107 (1983) 223. (b) W. Hinsen, W. Bytyn and M. Baerns, in: Proc. 8th International Congress on Catalysis, Vol. 3, Berlin, 1984 (Dechema, Frankfurtam-Main, 1984) p. 581.Google Scholar
  3. [3]
    T. Ito, J.-X. Wang, C.-H. Lin and J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 5062.CrossRefGoogle Scholar
  4. [4]
    V.D. Sokolovskii and A.E. Mamedov, Catal. Today 14 (1992) 331.CrossRefGoogle Scholar
  5. [5]
    E.E. Wolf, ed., Methane Conversion by Oxidative Processes (Van Nostrand Reinhold, New York, 1992).Google Scholar
  6. [6]
    J.H. Lunsford, in: New Frontiers in Catalysis, eds. L. Guczi et al. (Elsevier, Amsterdam, 1993) p. 103.Google Scholar
  7. [7]
    E.N. Voskresenskay, V.G. Roguleva and A.G. Anshits, Catal. Rev. Sci. Eng. 37 (1995) 101.Google Scholar
  8. [8]
    D. Eng and Stoukides, Catal. Rev. Sci. Eng. 33 (1991) 375.Google Scholar
  9. [9]
    D. Lafarga, J. Santamaria and M. Menendez, Chem. Eng. Sci. 49 (1994) 2005.CrossRefGoogle Scholar
  10. [10]
    M.Yu. Sinev, V.N. Korchak and O.V. Krylov, Kinet. Katal. 27 (1986) 1274.Google Scholar
  11. [11]
    K. Otsuka, A.A. Said, K. Jinno and T. Komatsu, Chem. Lett. (1987) 77.Google Scholar
  12. [12]
    A.G. Anshits, N.P. Kirik, V.G. Roguleva, A.N. Shigapov and G.E. Selyutin, Catal. Today 4 (1989) 399.CrossRefGoogle Scholar
  13. [13]
    J.T. Gleaves, G.S. Yablonskii, P. Phanawadee and Y. Schuurman, Appl. Catal. 160 (1997) 55.CrossRefGoogle Scholar
  14. [14]
    G. Mestl, H. Knözinger and J.H. Lunsford, Ber. Bunsenges. Phys. Chem. 97 (1993) 319.Google Scholar
  15. [15]
    A.G. Anshits, E.N. Voskresenskaya E.V. Kondratenko and N.G. Maksomov, Catal. Today 24 (1995) 217.CrossRefGoogle Scholar
  16. [16]
    H. Borchert and M. Baerns, J. Catal. 168 (1997) 315.CrossRefGoogle Scholar
  17. [17]
    V.G. Roguleva, E.V. Kondratenko, N.G. Maksimov, G.E. Selyutin and A.G. Anshits, Catal. Lett. 16 (1992) 165.CrossRefGoogle Scholar
  18. [18]
    E.V. Kondratenko, N.G. Maksimov and A.G. Anshits, Kinet. Katal. 36 (1995) 716 (in Russian).Google Scholar
  19. [19]
    K.P. Peil, J.G. Goodwin and G. Marcelin, J. Catal. 37 (1991) 143.CrossRefGoogle Scholar
  20. [20]
    Z. Kalenik and E.E. Wolf, Prepr. Am. Chem. Soc. Div. Petrol. Chem. 37 (1992) 1.Google Scholar
  21. [21]
    J.L. Dubois and C.J. Cameron, Appl. Catal. 131 (1990) 49.Google Scholar
  22. [22]
    G. Gayko, D. Wolf, E.V. Kondratenko and M. Baerns, J. Catal. 178 (1998) 441.CrossRefGoogle Scholar
  23. [23]
    T. Grzybeck and M. Baerns, J. Catal. 129 (1991) 106.CrossRefGoogle Scholar
  24. [24]
    J.A.S.P. Carreiro and M. Baerns, J. Catal. 117 (1989) 396.CrossRefGoogle Scholar
  25. [25]
    R. Spinicci and A. Tofanari, Catal. Today 6 (1990) 473.CrossRefGoogle Scholar
  26. [26]
    D.D. Eley and P.B. Moore, Surf. Sci. 76 (1978) 76.CrossRefGoogle Scholar
  27. [27]
    Y. Barbaux, J.P. Bonnelle, J.P. Beaufils, J. Chem. Res. M. (1979) 556.Google Scholar
  28. [28]
    Z. Zhang, X.E. Verykios and M. Baerns, Catal. Rev. Sci. Eng. 36 (1994) 507.Google Scholar
  29. [29]
    T. Kudo and K. Fueki, Solid State Ionics (Verlag Chemie, Weinheim, 1990).Google Scholar
  30. [30]
    L. Lehmann and M. Baerns, J. Catal. 135 (1992) 467.CrossRefGoogle Scholar
  31. [31]
    A.G. Anshits, V.G. Roguleva and E.V. Kondratenko, in: Studies in Surface Science and Catalysis, Vol. 82, eds. V. Cortes Corberan and S. Vic Belon (Elsevier, Amsterdam, 1994) p. 337.Google Scholar
  32. [32]
    A. Cherrak, R. Hubaut and Y. Barbaux, J. Chem. Soc. Faraday Trans. 88 (1992) 3241.CrossRefGoogle Scholar
  33. [33]
    T.H. Etsel and S.N. Flengas, J. Electrochem. Soc. 116 (1969) 771.Google Scholar
  34. [34]
    S.P. Miffot, J. Chem. Phys. 36 (1962) 1383.CrossRefGoogle Scholar
  35. [35]
    V. Kummar and Y.P. Gupta, J. Phys. Chem. Solids 30 (1969) 677.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • E.V. Kondratenko
    • 1
  • D. Wolf
    • 1
  • M. Baerns
    • 1
  1. 1.Institute for Applied Chemistry Berlin‐AdlershofBerlinGermany

Personalised recommendations