Catalysis Letters

, Volume 46, Issue 3–4, pp 213–221 | Cite as

A mechanistic study of nitrous oxide adsorption and decomposition on zirconia

  • T.M. Miller
  • V.H. Grassian
Article

Abstract

FT-IR spectroscopy and mass spectrometry have been used to study the adsorption and decomposition of nitrous oxide on zirconia. It was determined that zirconia cations in the 4+ oxidation state are the site for molecular adsorption of N2O, whereas Zr3+ sites are active toward dissociative adsorption of N2O at temperatures as low as 25°C. Catalytic decomposition of N2O on ZrO2 occurs at temperatures above 350°C and follows first-order reaction kinetics. Experiments utilizing isotopic labeling in conjunction with mass spectrometry were done to elucidate the details of the reaction mechanism. Based on the results presented here, a mechanism for N2O decomposition on ZrO2 is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.H. Theimens and W.C. Trogler, Science 251 (1991) 932.Google Scholar
  2. [2]
    R. Reimer, C.S. Slaten, M. Seapan, M.W. Lower and P.E. Tomlinson, Environm. Progr. 13 (1994) 134.Google Scholar
  3. [3]
    T.M. Miller and V.H. Grassian, J. Am. Chem. Soc. 117 (1995) 10969.CrossRefGoogle Scholar
  4. [4]
    K. Anseth and T.A. Koch, US Patent 5314673.Google Scholar
  5. [5]
    H.C. Zeng, J. Lin, W.K. Teo, J.C. Wu and K.L. Tan, J. Mater. Res. 10 (1995) 545.Google Scholar
  6. [6]
    V.E. Henrich and P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994).Google Scholar
  7. [7]
    M.A. Barteau, J. Vac. Soc. Technol. A11 (1993) 2162.Google Scholar
  8. [8]
    A.A. Davydov, Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides, ed. C.H. Rochester (Wiley, NewYork, 1990).Google Scholar
  9. [9]
    C. Morterra, E. Giamello, L. Orio and M. Volante, J. Phys. Chem. 94 (1990) 3111.CrossRefGoogle Scholar
  10. [10]
    Z.X. Liu, Q.X. Bao and N.J. Wu, J. Catal. 113 (1988) 45.CrossRefGoogle Scholar
  11. [11]
    J. Haber and E.M. Serwicka, React. Kinet. Catal. Lett. 35 (1987) 369.CrossRefGoogle Scholar
  12. [12]
    J.B. Black, J.D. Scott, E.M. Serwicka and J.B. Goodenough, J. Catal. 106 (1987) 16.CrossRefGoogle Scholar
  13. [13]
    Z.X. Liu, K. Xie, Y.Q. Li and Q.X. Bao, J. Catal. 119 (1989) 249.Google Scholar
  14. [14]
    M.E. Lashier and G.L. Schrader, J. Catal. 128 (1991) 113.CrossRefGoogle Scholar
  15. [15]
    T. Jin, T. Okuhara, G.J. Mainsand and J.M. White, J. Phys. Chem. 91 (1987) 3310.CrossRefGoogle Scholar
  16. [16]
    P. Basu, T.H. Ballinger and J.T. Yates Jr., Rev. Sci. Instrum. 59 (1988) 1321.CrossRefGoogle Scholar
  17. [17]
    T. Yamaguchi, Catal. Today 20 (1994) 199.Google Scholar
  18. [18]
    K.-H. Jacob, E. Knozinger and S. Benfer, J. Chem. Soc. Faraday Trans. 90 (1994) 2969.CrossRefGoogle Scholar
  19. [19]
    C. Morterra, L. Orio and C. Emanuel, J. Chem. Soc. Faraday Trans. 86 (1990) 3003.CrossRefGoogle Scholar
  20. [20]
    (a) E.R.S. Winter, J. Catal. 15 (1969) 144; (b) E.R.S. Winter, J. Catal. 34 (1974) 431.CrossRefGoogle Scholar
  21. [21]
    S.L. Raj, B. Viswanathan, and V. Srinivasan, Ind. J. Chem. 21A (1982) 689.Google Scholar
  22. [22]
    J.F. Read, J. Catal. 28 (1973) 428.CrossRefGoogle Scholar
  23. [23]
    A. Cimino, V. Indova, F. Pepe and F.S. Stone, Gaz. Chim. Ital. 103 (1973) 935.Google Scholar
  24. [24]
    Y. Yanagisawa, K. Takaoka and S. Yamabe, J. Chem. Soc. Faraday Trans. 90 (1994) 2561.CrossRefGoogle Scholar
  25. [25]
    R. Stevens, Zirconia and Zirconia Ceramics (Magnesium Elektron, 1986).Google Scholar
  26. [26]
    K. Aika and E. Iwamatsu, in: Studies in Surface Science and Catalysis, Vol. 90, eds. H. Hattori, M. Misono and Y. Ono (Elsevier, Amsterdam, 1994).Google Scholar
  27. [27]
    Y.-X. Li and K. Klabunde, Chem. Mater. 4 (1992) 611.CrossRefGoogle Scholar
  28. [28]
    G.K. Boreskov, Adv. Catal. 15 (1964) 285.CrossRefGoogle Scholar
  29. [29]
    G.K. Boreskov, Discuss. Faraday Soc. 41 (1966) 263.CrossRefGoogle Scholar
  30. [30]
    L.G. Harrison and J.A. Morrison, J. Phys. Chem. 62 (1958) 372.CrossRefGoogle Scholar
  31. [31]
    Z. Sojka and M. Che, J. Phys.Chem. 100 (1996) 4776.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • T.M. Miller
  • V.H. Grassian

There are no affiliations available

Personalised recommendations