Catalysis Letters

, Volume 61, Issue 1–2, pp 7–13 | Cite as

Prospects for detecting metal–adsorbate vibrations by sum‐frequency spectroscopy

  • Christopher T. Williams
  • Yong Yang
  • Colin D. Bain


Sum‐frequency spectroscopy (SFS) was used in an attempt to detect the platinum–carbon vibration of CO adsorbed on Pt(111). The international free‐electron laser FELIX at the FOM Institute, Rijnhuizen, provided the required tunable far‐infrared (19–23 µm) source, while complementary measurements in the C–O stretch region (4.7–5.1 µm) were performed at the University of Oxford with a conventional nanosecond laser system. Ordered Pt(111) surfaces were prepared by the H2/O2 flame annealing approach and CO monolayers were produced by exposure of the Pt crystal to gaseous CO in a flow reactor. The monolayers were characterized by sum‐frequency (SF) measurements of the v C-O vibrational frequency. The CO adsorbed primarily in the terminal (atop) configuration, with a v C-O frequency of around 2078 cm−1. In the far‐IR region, the non‐resonant background from the Pt substrate could readily be detected by SFS, but there was no evidence for the v Pt-CO mode. Direct laser‐induced desorption and thermal desorption of CO are unlikely under the experimental conditions. It is therefore probable that the intrinsic cross‐section of the Pt–CO mode is too low for easy detection by SFS. The implications for the use of SFS to detect metal–adsorbate vibrational modes are discussed in light of these findings.

sum‐frequency spectroscopy Pt(111) carbon monoxide adsorption far‐infrared free‐electron laser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.W. Goodman, J. Phys. Chem. 100 (1996) 13090.CrossRefGoogle Scholar
  2. [2] (a)
    C.D. Bain, J. Chem. Soc. Faraday Trans. 91 (1995) 1281; (b) A. Tadjeddine and A. Peremans, in: Advances in Spectroscopy, Vol. 26, eds. R.J.H. Clark and R.E. Hester (Wiley, Chichester, 1998) ch. 4.CrossRefGoogle Scholar
  3. [3]
    X. Su, J. Jensen, M.X. Yang, M.B. Salmeron, Y.R. Shen and G.A. Somorjai, Faraday Discuss. 105 (1996) 263.CrossRefGoogle Scholar
  4. [4] (a)
    P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Am. Chem. Soc. 118 (1996) 2942; (b) P.S. Cremer, X. Su, Y.R. Shen and G.A. Somorjai, J. Chem. Soc. Faraday Trans. 92 (1996) 4717.CrossRefGoogle Scholar
  5. [5]
    X. Su, Y.R. Shen and G.A. Somorjai, Chem. Phys. Lett. 280 (1997) 302.CrossRefGoogle Scholar
  6. [6]
    A. Bandara, S. Dobashi, J. Kubota, K. Onda, A. Wada, K. Domen, C. Hirose and S.S. Kano, Surf. Sci. 387 (1997) 312.CrossRefGoogle Scholar
  7. [7] (a)
    K. Domen, N. Akamatsu, H. Yamamoto, A. Wada and C. Hirose, Surf. Sci. 283 (1993) 468; (b) K. Domen, H. Yamamoto, N. Watanabe, A. Wada and C. Hirose, Appl. Phys. A 60 (1995) 131.CrossRefGoogle Scholar
  8. [8] (a)
    N. Akamatsu, K. Domen and C. Hirose, J. Phys. Chem. 97 (1993) 10070; (b) P. Guyot-Sionnest, J.H. Hunt and Y.R. Shen, Phys. Rev. Lett. 59 (1987) 1597; (c) D. Zhang, J. Gutow and K.B. Eisenthal, J. Phys. Chem. 98 (1994) 13729; (d) P. Guyot-Sionnest, J. Electron Spectrosc. Relat. Phenom. 64 (1993) 1; (e) P. Rabinowitz, B.N. Perry and N.J. Levinos, IEEE J. Quantum Electron 22 (1986) 797; (f) A.L. Harris and N.J. Levinos, Appl. Opt. 26 (1987) 3996.CrossRefGoogle Scholar
  9. [9] (a)
    CLIO in Orsay: A. Tadjeddine, A. Peremans and P. Guyot-Sionnest, Surf. Sci. 335 (1995) 210; (b) FELIX in Rijnhuizen: W.M. van der Ham, Q.H.F. Vrehen and E.R. Eliel, Opt. Lett. 21 (1996) 1448.CrossRefGoogle Scholar
  10. [10]
    R. Braun, B.D. Casson, C.D. Bain, E.W.M. van der Ham, Q.H.F. Vrehen, E.R. Eliel, A.M. Briggs and P.B. Davies, J. Chem. Phys. 110 (1999) 4634.CrossRefGoogle Scholar
  11. [11] (a)
    C.T. Williams, A.A. Tolia, H.-Y.H. Chan, C.G. Takoudis and M.J. Weaver, J. Catal. 163 (1996) 63; (b) C.T. Williams, C.G. Takoudis and M.J. Weaver, J. Phys. Chem. B 102 (1998) 406.CrossRefGoogle Scholar
  12. [12]
    Y.R. Shen, The Principles of Non-Linear Optics (Wiley, New York, 1984).Google Scholar
  13. [13]
    J. Clavelier, J. Electroanal. Chem. 107 (1980) 211.CrossRefGoogle Scholar
  14. [14]
    M.J. Weaver, J. Phys. Chem. 100 (1996) 13079.CrossRefGoogle Scholar
  15. [15]
    A.M. Baro and H. Ibach, J. Chem. Phys. 71 (1979) 4812.CrossRefGoogle Scholar
  16. [16] (a)
    S. Zou and M.J. Weaver, J. Phys. Chem. 100 (1996) 4237; (b) Z.Q. Tian, B. Ren and B.W. Mao, J. Phys. Chem. B 101 (1997) 1338.CrossRefGoogle Scholar
  17. [17]
    D. Hoge, M. Tushaus, E. Schweizer and A.M. Bradshaw, Chem. Phys. Lett. 151 (1988) 230.CrossRefGoogle Scholar
  18. [18]
    I.J. Malik and M. Trenary, Surf. Sci. 214 (1989) L237.CrossRefGoogle Scholar
  19. [19] (a)
    R. Ryberg, Phys. Rev. B 40 (1989) 8567; (b) B.N.J. Persson and R. Ryberg, Phys. Rev. B 40 (1989) 10273; (c) R. Ryberg, J. Electron Spectrosc. Relat. Phenom. 54/55 (1990) 65; (d) R. Ryberg, Phys. Rev. B 44 (1991) 13160.CrossRefGoogle Scholar
  20. [20]
    R.G. Tobin and P.L. Richards, Surf. Sci. 179 (1987) 387.CrossRefGoogle Scholar
  21. [21] (a)
    P. Guyot-Sionnest and A. Tadjeddine, Chem. Phys. Lett. 172 (1990) 341; (b) A. Peremans and A. Tadjeddine, Chem. Phys. Lett. 220 (1994) 481; (c) A. Peremans, A. Tadjeddine and P. Guyot-Sionnest, Chem. Phys. Lett. 247 (1995) 243.CrossRefGoogle Scholar
  22. [22]
    H. Harle, K. Mendel, U. Metka, J.-R. Volpp, L. Willms and J. Wolfrum, Chem. Phys. Lett. 279 (1997) 275.CrossRefGoogle Scholar
  23. [23]
    X. Su, P.S. Cremer, Y.R. Shen and G.A. Somorjai, Phys. Rev. Lett. 77 (1996) 3858.CrossRefGoogle Scholar
  24. [24]
    D.R. Lide and H.P.R. Frederikse, eds., CRC Handbook of Chemistry and Physics, 74th Ed. (CRC Press, London, 1993) pp. 12-135.Google Scholar
  25. [25]
    J.H. Bechtel, J. Appl. Phys. 46 (1975) 1585.CrossRefGoogle Scholar
  26. [26]
    L.P. Ford, H.L. Nigg, P. Blowers and R.I. Masel, J. Catal. 179 (1998) 163.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Christopher T. Williams
    • 1
  • Yong Yang
    • 1
    • 2
  • Colin D. Bain
    • 1
  1. 1.Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxfordUK
  2. 2.State Key Laboratory for Physical Chemistry of Solid Surfaces and Institute for Physical ChemistryXiamen UniversityXiamen, FujianPR China

Personalised recommendations