Catalysis Letters

, Volume 61, Issue 3–4, pp 179–186 | Cite as

CO oxidation catalyzed by Cu‐exchanged zeolites: a density functional theory study

  • D. Sengupta
  • W.F. Schneider
  • K.C. Hass
  • J.B. Adams
Article

Abstract

The catalytic oxidation of CO by Cu‐exchanged high‐silica zeolites (e.g., ZSM‐5) has been investigated theoretically using density functional theory. Calculations reveal two distinct, parallel pathways for oxidation of CO: (i) adsorption of O2= on a reduced Cu site followed by O atom abstraction by CO, and (ii) adsorption of CO followed by its reaction with O2= to form a cyclic compound which decomposes to form CO2=. The reduced site is regenerated via two different pathways, both of which involve oxidation of one or more CO molecules: (i) abstraction of atomic oxygen by CO from the oxidized active site, and (ii) formation of a carbonate species followed by its reaction with a molecule of CO. The relevance of these reactions to the reduction of NO is discussed.

CO oxidation Cu‐ZSM‐5 zeolites DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Shelef, Chem. Rev. 95 (1995) 209.Google Scholar
  2. [2]
    M. Iwamoto and H. Hamada, Catal. Today 10 (1991) 57.Google Scholar
  3. [3]
    G. Centi and S. Perathoner, Appl. Catal. A 132 (1995) 179.Google Scholar
  4. [4]
    J.T. Kummer, J. Phys. Chem. 90 (1986) 4747.Google Scholar
  5. [5]
    N.W. Cant, P.C. Hicks and B.S. Lennon, J. Catal. 54 (1978) 372.Google Scholar
  6. [6]
    D.R. Rainer, M. Koranne, S.M. Vesecky and D.W. Goodman, J. Phys. Chem. B 101 (1997) 10769.Google Scholar
  7. [7]
    P.J. Berlowitz, C.H.F. Peden and D.W. Goodman, J. Phys. Chem. 92 (1988) 5213; D.W. Goodman and C.H.F. Peden, J. Phys. Chem. 90 (1986) 4839; J. Szanyi and D.W. Goodman, J. Phys. Chem. 98 (1994) 2972.Google Scholar
  8. [8]
    T. Engel and G. Ertl, Adv. Catal. 28 (1979) 1.Google Scholar
  9. [9]
    W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. B 102 (1998) 3692.Google Scholar
  10. [10]
    W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. B 101 (1997) 4353.Google Scholar
  11. [11]
    W.F. Schneider, K.C. Hass, R. Ramprasad and J.B. Adams, J. Phys. Chem. 100 (1996) 6032.Google Scholar
  12. [12]
    K.C. Hass and W.F. Schneider, J. Phys. Chem. 100 (1996) 9292.Google Scholar
  13. [13]
    K.C. Hass and W.F. Schneider, Phys. Chem. Chem. Phys. (1999) 639.Google Scholar
  14. [14]
    H.V. Brand, A. Redondo and P.J. Hay, J. Phys. Chem. B 101 (1997) 7691.Google Scholar
  15. [15]
    Y. Yokomichi, T. Yamabe, H. Ohtsuka and T. Kakumoto, J. Phys. Chem. 100 (1996) 14424; Y. Yokomichi, H. Ohtsuka, T. Tabata, O. Okada, Y. Yokoi, H. Ishikawa, R. Yamaguchi, H. Matusi, A. Tachibana and Y. Yamabe, Catal. Today 23 (1995) 431.Google Scholar
  16. [16]
    L. Rodriguez-Santiago, M. Sierka, V. Branchadell, M. Sodupe and J. Sauer, J. Am. Chem. Soc. 120 (1998) 1545.Google Scholar
  17. [17]
    B.L. Trout, A.K. Chakraborty and A.T. Bell, J. Phys. Chem. 100 (1996) 4173.Google Scholar
  18. [18]
    B.L. Trout, A.K. Chakraborty and A.T. Bell, J. Phys. Chem. 100 (1996) 17582.Google Scholar
  19. [19]
    D.J. Liu and J. Robota, in: Reduction of Nitrogen Oxide Emissions, ACS Symp. Series, Vol. 587 (Am. Chem. Soc., Washington, DC, 1995) p. 147.Google Scholar
  20. [20]
    H. Yamashita, M. Matsuoka, K. Tsuji, M. Anpo and M. Che, J. Phys. Chem. 100 (1996) 397.Google Scholar
  21. [21]
    C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic and M. Bellatreccia, J. Phys. Chem. B 101 (1997) 344.Google Scholar
  22. [22]
    E.J. Baerends, D.E. Ellis and P. Ross, Chem. Phys. 2 (1973) 41.Google Scholar
  23. [23]
    A.D. Becke, Phys. Rev. A 38 (1988) 3098.Google Scholar
  24. [24]
    J.P. Perdew, Phys. Rev. B 33 (1986) 8822.Google Scholar
  25. [25]
    H.-J. Jang, W.K. Hall and J.L. d'Itri, J. Phys. Chem. 100 (1996) 9416.Google Scholar
  26. [26]
    T. Beutel, J. Sarkany, G.-D. Lei, J.Y. Yan and W.M.H. Sachtler, J. Phys. Chem. 100 (1996) 845.Google Scholar
  27. [27]
    Y. Huang, J. Am. Chem. Soc. 95 (1973) 6636.Google Scholar
  28. [28]
    A.W. Aylor, S.C. Larsen, J.A. Reimer and A.T. Bell, J. Catal. 157 (1995) 592.Google Scholar
  29. [29]
    G. Spoto, A. Zecchina, S. Bordiga, G. Ricchiardi and G. Matara, Appl. Catal. B 3 (1994) 151.Google Scholar
  30. [30]
    S. Sakai, K. Kitaura and K. Morokuma, Inorg. Chem. 21 (1982) 760.Google Scholar
  31. [31]
    R. Caballol, E.S. Macros and J.-C. Barthelat, J. Phys. Chem. 91 (1987) 1328.Google Scholar
  32. [32]
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed. (Wiley, New York, 1986).Google Scholar
  33. [33]
    M.G. Moll, D.R. Clutter and W.E. Thompson, J. Chem. Phys. 45 (1966) 4469.Google Scholar
  34. [34]
    A.J. Capote, J.T. Roberts and R.J. Madix, Surf. Sci. 209 (1989) L151.Google Scholar
  35. [35]
    D. Sengupta, J.B. Adams, W.F. Schneider and K.C. Hass, in preparation.Google Scholar
  36. [36]
    D. Sengupta, J.B. Adams, W.F. Schneider and K.C. Hass, in preparation.Google Scholar
  37. [37]
    Q. Cui, K. Morokuma, J.M. Bowman and S.J. Klippenstein, J. Chem. Phys. 110 (1999) 9469.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • D. Sengupta
    • 1
  • W.F. Schneider
    • 2
  • K.C. Hass
    • 2
  • J.B. Adams
    • 1
  1. 1.Department of Chemical, Bio and Materials EngineeringArizona State UniversityTempeUSA
  2. 2.Ford Research LaboratoryDearbornUSA

Personalised recommendations