Catalysis Letters

, Volume 64, Issue 2–4, pp 101–106

Making gold less noble

  • M. Mavrikakis
  • P. Stoltze
  • J.K. Nørskov
Article

Abstract

Self‐consistent density functional calculations for the adsorption of O and CO on flat and stepped Au(111) surfaces are used to investigate effects which may increase the reactivity of Au. We find that the adsorption energy does not depend on the number of Au layers if there are more than two layers. Steps are found to bind considerably stronger than the (111) terraces, and an expansive strain has the same effect. On this basis we suggest that the unusually large catalytic activity of highly‐dispersed Au particles may in part be due to high step densities on the small particles and/or strain effects due to the mismatch at the Au–support interface.

gold CO oxidation catalysis particle‐size effect steps DFT supported metal clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Saliba, D.H. Parker and B.E. Koel, Surf. Sci. 410 (1998) 270CrossRefGoogle Scholar
  2. [1]a
    J. Wang and B.E. Koel, J. Phys. Chem. A 102 (1998) 8573.CrossRefGoogle Scholar
  3. [2]
    A.G. Sault, R.J. Madix and C.T. Campbell, Surf. Sci. 169 (1986) 347.CrossRefGoogle Scholar
  4. [3]
    M. Haruta, Catal. Today 36 (1997) 153.CrossRefGoogle Scholar
  5. [4]
    J.D. Grunwaldt, C. Kiener, C. Wogerbauer and A. Baiker, J. Catal. 181 (1999) 223.CrossRefGoogle Scholar
  6. [5]
    J.D. Grunwaldt and A. Baiker, J. Phys. Chem. B 103 (1999) 1002.CrossRefGoogle Scholar
  7. [6]
    S.D. Lin, M. Bollinger and M.A. Vannice, Catal. Lett. 17 (1993) 245.CrossRefGoogle Scholar
  8. [7]
    W.N. Delgass, personal communication.Google Scholar
  9. [8]
    F. Boccuzzi, G. Cerrato, F. Pinna and G. Strukul, J. Phys. Chem. B 102 (1998) 5733.CrossRefGoogle Scholar
  10. [9]
    M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.CrossRefGoogle Scholar
  11. [10]
    B. Hammer, L.B. Hansen and J.K. Nørskov, Phys. Rev. B 59 (1999) 7413.CrossRefGoogle Scholar
  12. [11]
    M. Mavrikakis, L.B. Hansen, J.J. Mortensen, B. Hammer and J.K. Nørskov, in: Transition State Modeling for Catalysis, ACS Symposium Series, Vol. 721, eds. D.G. Truhlar and K. Morokuma (Am. Chem. Soc., Washington, DC, 1999) ch. 19, p. 245.Google Scholar
  13. [12]
    D.H. Vanderbilt, Phys. Rev. B 41 (1990) 7892.CrossRefGoogle Scholar
  14. [13]
    J.P. Perdew et al., Phys. Rev. B 46 (1992) 6671.CrossRefGoogle Scholar
  15. [14]
    J.A. White and D.M. Bird, Phys. Rev. B 50 (1994) 4954.CrossRefGoogle Scholar
  16. [15]
    Structure Data of Elements and Intermetallic Phases, Landolt-Börnstein, New Series, Vol. IIIb (Springer, Berlin, 1971).Google Scholar
  17. [16]
    G. Kresse and J. Forthmüller, Comput. Mat. Sci. 6 (1996) 15.CrossRefGoogle Scholar
  18. [17]
    M.D. Morse, M.E. Geusic, J.R. Heath and R.E. Smalley, J. Chem. Phys. 83 (1985) 2293; L. Holmgren, M. Andersson and A. Rosen, Surf. Sci. 331-333 (1995) 231.CrossRefGoogle Scholar
  19. [18]
    U. Heiz, F. Vanolli, A. Sanchez and W.-D. Schneider, J. Am. Chem. Soc. 120 (1998) 9668.CrossRefGoogle Scholar
  20. [19]
    R.A. van Santen and M. Neurock, Catal. Rev. Sci. Eng. 37 (1995) 557; B. Hammer, Y. Morikawa and J.K. Nørskov, Phys. Rev. Lett. 76 (1996) 2141.Google Scholar
  21. [20]
    M. Ruff, S. Frey, B. Gleich and R.J. Behm, Appl. Phys. A 66 (1998) S513.CrossRefGoogle Scholar
  22. [21]
    J.A. Rodrigues, C.M. Truong and D.W. Goodman, J. Chem. Phys. 96 (1992) 7814.CrossRefGoogle Scholar
  23. [22]
    C. Ruggiero and P. Hollins, J. Chem. Soc. Faraday Trans. 92 (1996) 4829.Google Scholar
  24. [23]
    G. Wulff, Z. Kristallogr. 34 (1901) 449.Google Scholar
  25. [24]
    L. Vitos, A.V. Ruban, H.L. Skriver and J. Kollar, Surf. Sci. 411 (1998) 186.CrossRefGoogle Scholar
  26. [25]
    C. Mottet, G. Treglia and B. Legrand, Surf. Sci. 383 (1997) L719.CrossRefGoogle Scholar
  27. [26]
    A. Pinto, A.R. Pennisi, G. Faraci, G. D'Agostino, S. Mobilio and F. Boscherini, Phys. Rev. B 51 (1995) 5315.CrossRefGoogle Scholar
  28. [27]
    M. Mavrikakis, B. Hammer and J.K. Nørskov, Phys. Rev. Lett. 81 (1998) 2819.CrossRefGoogle Scholar
  29. [28]
    M. Klimenkov, S. Nepijko, H. Kuhlenbeck, M. Baumer, R. Schlögl and H.-J. Freund, Surf. Sci. 391 (1997) 27.CrossRefGoogle Scholar
  30. [29]
    S. Nepijko, M. Klimenkov, H. Kuhlenbeck, D. Zemlyanov, D. Herein, R. Schl¨ogl and H.-J. Freund, Surf. Sci. 412/413 (1998) 192.CrossRefGoogle Scholar
  31. [30]
    C.R. Berry, Phys. Rev. 88 (1952) 596.CrossRefGoogle Scholar
  32. [31]
    H.J. Wasserman and J.S. Vermaak, Surf. Sci. 32 (1972) 168.CrossRefGoogle Scholar
  33. [32]
    C.W. Mays, J.S. Vermaak and D. Kuhlmann-Wilsdorf, Surf. Sci. 12 (1968) 134.CrossRefGoogle Scholar
  34. [33]
    R. Lamber, S.Wetjen and N.J. Jaeger, Phys. Rev. B 51 (1995) 10968.CrossRefGoogle Scholar
  35. [34]
    B.S. Clausen, L. Gråbæk, H. Topsøe, L.B. Hansen, P. Stoltze, J.K. Nørskov and O.H. Nielsen, J. Catal. 141 (1993) 368.CrossRefGoogle Scholar
  36. [35]
    S. Giorgio, C. Chapon, C.R. Henry, G. Nihoul and J.M. Penisson, Philos. Mag. A 64 (1991) 87.Google Scholar
  37. [36]
    V.A. Bondzie, S.C. Parker and C.T. Campbell, J. Vac. Sci. Technol. A 17 (1999) 1717.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. Mavrikakis
    • 1
  • P. Stoltze
    • 2
  • J.K. Nørskov
    • 3
  1. 1.Department of Chemical EngineeringUniversity of Wisconsin–MadisonMadisonUSA
  2. 2.Department of Chemical Engineering, AalborgUniversity of EsbjergEsbjergDenmark
  3. 3.Center for Atomic‐Scale Materials Physics, Department of PhysicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations