Catalysis Letters

, Volume 48, Issue 1–2, pp 31–38 | Cite as

Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts

  • M.C.J. Bradford
  • M.A. Vannice


To obtain insight into the importance of metal-support interactions (MSI) in the CO2 reforming of CH4, the reaction was studied using pure TiO2, high-purity Pt powder, and two model TiOx/Pt systems. The latter two TiOx/Pt catalysts, prepared by oxidation of Ti nonylate deposited on the Pt powder surface, contained either one (θ=1) or ten (θ=10) theoretical monolayers of TiO2. The H2 and CO chemisorption capacities showed respective decreases of 1/3 and 1/2 on the latter two catalysts although the N2 BET surface areas were essentially unchanged. XRD analysis of either TiOx/Pt sample detected no TiOx structures. Specific rates (μ mol/(s gcat)), areal rates (μ mol/(s m2)) and turnover frequencies (s-1) for the CO2 reforming of CH4 decreased in the order TiOx/Pt (θ=10)TiOx/Pt( θ=1)>>Pt powder>TiO2. Neither pure Pt powder nor pure TiO2 showed appreciable activity for CH4-CO2 reforming; thus the dramatic increase in activity is attributed to the creation of new sites in the metal-support interfacial region which promote CH4 dissociation, CO2 dissociation and reduction, and subsequent CHxO decomposition. In addition, temperature-programmed hydrogenation of used catalyst samples clearly showed that TiOx overlayers on the Pt surface suppress carbon deposition during reaction via an ensemble effect, thus improving activity maintenance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.C.J. Bradford and M.A. Vannice, Appl. Catal. A. 142 (1996) 73, 97.CrossRefGoogle Scholar
  2. [2]
    Z.Zhang and X.E.Verykios, Appl. Catal. A 138 (1996) 109.CrossRefGoogle Scholar
  3. [3]
    M.C.J. Bradford and M.A. Vannice, J. Catal. (1997), in press.Google Scholar
  4. [4]
    A. Erdöhelyi, K. Fodor and F. Solymosi, Stud. Surf. Sci. Catal. 107 (1997) 525.CrossRefGoogle Scholar
  5. [5]
    Z. Zhang, V.A. Tsipouriari, A.M. Efstathiou and X.E. Verykios, J. Catal. 158 (1996) 51.CrossRefGoogle Scholar
  6. [6]
    A. Erdöhelyi, J. Cserényi and F. Solymosi, J. Catal. 141 (1993) 287.CrossRefGoogle Scholar
  7. [7]
    O. Yamazaki, T. Nozaki, K. Omata and K. Fujimoto, Chem. Lett. 10 (1992) 1953.CrossRefGoogle Scholar
  8. [8]
    E.Ruckenstein and Y.H. Hu, Appl. Catal. A 133 (1995) 149.CrossRefGoogle Scholar
  9. [9]
    A.M. Gadalla and M.E. Sommer, J. Am. Ceram. Soc. 72 (1989) 683.CrossRefGoogle Scholar
  10. [10]
    J.T. Richardson, B. Turk and M.V. Twigg, Appl. Catal. A 148 (1996) 97.CrossRefGoogle Scholar
  11. [11]
    Y. Chen and J.Ren, Catal. Lett. 29 (1994) 39.CrossRefGoogle Scholar
  12. [12]
    A. Erdöhelyi, J. Cserényi, E. Papp and F. Solymosi, Appl. Catal. A 108 (1994) 205.CrossRefGoogle Scholar
  13. [13]
    A.M. Efstathiou, A. Kladi, V.A. Tsipouriari and X.E. Verykios, J. Catal. 158 (1996) 64.CrossRefGoogle Scholar
  14. [14]
    (a)M.A.Vannice and D. Poondi, J. Catal., submitted. (b) D. Poondi, PhD Dissertation, The Pennsylvania State University, USA (1996).Google Scholar
  15. [15]
    B.D. Cullity, Elements of X-ray Diffraction, 2nd Ed. (Addison-Wesley, Reading, 1978).Google Scholar
  16. [16]
    J.W. Edington, Practical Electron Microscopy in Materials Science (N.V. Philips Gloeilampenfabrieken, Eindoven, 1976).Google Scholar
  17. [17]
    R.K. Brandt, M.R. Hughes, L.P. Bourget, K. Truszkowska and R.G.Greenler, Surf. Sci. 286 (1993) 15.CrossRefGoogle Scholar
  18. [18]
    J. Segner, C.T. Campbell, G. Doyen and G. Ertl, Surf. Sci. 138 (1984) 505.CrossRefGoogle Scholar
  19. [ 19]
    G. Ertl, M. Neumann and K.M. Streit, Surf. Sci. 64 (1977) 393.CrossRefGoogle Scholar
  20. [20]
    J.R. Rostrup-Nielsen and J.-H. Bak Hansen, J. Catal. 144 (1993) 38.CrossRefGoogle Scholar
  21. [21]
    M. Boudart, Chem.Rev. 95 (1995) 661.CrossRefGoogle Scholar
  22. [22]
    J.M. Herrmann, M. Gravelle-Rumeau-Maillot and P.C. Gravelle, J. Catal. 104 (1987) 136.CrossRefGoogle Scholar
  23. [23]
    B.Z. Nikolic, H. Huang, D. Gervasio, A. Lin, C. Fierro, R.R. Adzic and E.B. Yeager, J. Electroanal. Chem. 295 (1990) 415.CrossRefGoogle Scholar
  24. [24]
    A. Rodes, E. Pastor and T. Iwasita, Anal. Quim. 89 (1993) 458.Google Scholar
  25. [25]
    M.C. Rom_an-Mart ¨ nez, D. Cazorla-Amor_os, C. Salinas-Mart ¨ nez de Lecea and A. Linares-Solano, Langmuir 12 (1996) 379.CrossRefGoogle Scholar
  26. [26]
    C.R. Prichard and C.N. Hinshelwood, J. Chem. Soc. 127 (1925) 806.Google Scholar
  27. [27]
    G.A. Somorjai, R.W. Joyner and B. Lang, Proc. Roy. Soc. London 331 (1972) 335.CrossRefGoogle Scholar
  28. [28]
    T.P. Beebe Jr., D.W. Goodman, B.D. Kay and J.T. Yates Jr., J. Chem. Phys. 87 (1987) 2305.Google Scholar
  29. [29]
    D.J. Trevor, D.M. Cox and A. Kaldor, J. Am. Chem. Soc. 112 (1990) 3742.CrossRefGoogle Scholar
  30. [30]
    R. vanHardeveld and F. Hartog, Surf. Sci. 15 (1969) 189.CrossRefGoogle Scholar
  31. [31]
    M.F.Mark and W.F. Maier, J. Catal. 164 (1996) 122.CrossRefGoogle Scholar
  32. [32]
    M. Sigl, M.C.J. Bradford, H. Knözinger and M.A. Vannice, Topics Catal., submitted.Google Scholar
  33. [33]
    K. Tanaka, K. Miyahara and I. Toyoshima, J. Phys. Chem. 88 (1984) 3504.CrossRefGoogle Scholar
  34. [34]
    W. Fancheng, W. Huilin, K.R. Tsai, W. Shuijuand and X. Fuchun, Catal. Lett. 12 (1992) 319.CrossRefGoogle Scholar
  35. [35]
    U. Bardi, K. Tamura and Y.Nihei, Catal. Lett. 3 (1989) 117.CrossRefGoogle Scholar
  36. [36]
    D.J. Dwyer, J.L. Robbins, S.D. Cameron, N. Dudash and J. Hardenbergh in: Strong Metal Support Interactions, ACS Symposium Series 298 (Am. Chem. Soc., Washington, 1986) p. 21.Google Scholar
  37. [37]
    A.A. Davydov, M.P. Komarova, V.F. Anufrienko and N.G. Maksimov, Kinet. Catal. 14 (1973) 1342.Google Scholar
  38. [38]
    L. Bonneviot and G.L. Haller, J. Catal. 113 (1988) 96.CrossRefGoogle Scholar
  39. [39]
    X.S. Li, W.Z. Li, Y.X. Chen and H.L. Wang, Catal. Lett. 32 (1995) 31.CrossRefGoogle Scholar
  40. [40]
    U. Roland, R. Salzer, T. Braunschweig, F. Roessner and H. Winkler, J. Chem. Soc. Faraday Trans. 9 (1995) 1091.CrossRefGoogle Scholar
  41. [41]
    R.A. Demmin, C.S. Ko and R.J. Gorte, J. Phys. Chem. 89 (1985) 1151.CrossRefGoogle Scholar
  42. [42]
    B. Sen, P. Chou and M.A. Vannice, J. Catal. 101 (1986) 517.CrossRefGoogle Scholar
  43. [43]
    M.A. Vannice, L.C. Hasselbring and B. Sen, J. Catal. 97 (1986) 66.CrossRefGoogle Scholar
  44. [44]
    G.B. Raupp and J.A.Dumesic, J. Phys.Chem. 89 (1985) 5240.CrossRefGoogle Scholar
  45. [45]
    L-Q. Wang, A.N. Shultz, D.R. Baer and M.H. Engelhard, J. Vac. Sci. Technol. A. 14 (1996) 1532.CrossRefGoogle Scholar
  46. [46]
    B. Sen and J.L. Falconer, J. Catal. 125 (1990) 35.CrossRefGoogle Scholar
  47. [47]
    J.L. Robbins and E. Marucci-Soos, J. Phys. Chem. 93 (1989) 2885.CrossRefGoogle Scholar
  48. [48]
    M.A.Vannice and C. Sudhakar, J. Phys. Chem. 88 (1984) 2429.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • M.C.J. Bradford
  • M.A. Vannice

There are no affiliations available

Personalised recommendations