Electrochemical Characterization of Human Skin by Impedance Spectroscopy: The Effect of Penetration Enhancers
Article
- 192 Downloads
- 24 Citations
Abstract
The electrochemical properties of human cadaver skin were studied in a diffusion cell with impedance spectroscopy as a function of time in the absence and presence of penetration enhancers dodecyl N,N-dimethylamino acetate and Azone. An improved electrochemical model of skin is presented, and combining the novel model with modern fractal mathematics, the effect of enhancers on the surface of skin is demonstrated. The enhancers appeared to open new penetration routes and increase the ohmic resistance, capacitive properties, and fractal dimension of skin, which means a rougher or more heterogeneous surface.
transdermal drug delivery impedance spectroscopy human skin penetration enhancers fractal surface
Preview
Unable to display preview. Download preview PDF.
REFERENCES
- 1.V. Srinivasan, W. I. Higuchi, S. M. Sims, A. H. Ghanem, and C. R. Behl. Transdermal iontophoretic drug delivery: Mechanistic analysis and application to polypeptide delivery. J. Pharm. Sci. 78:370–375 (1989).Google Scholar
- 2.T. Yamamoto and Y. Yamamoto. Electrical properties of the epidermal stratum corneum. Med. Biol. Eng. 14:151–158 (176).Google Scholar
- 3.T. Yamamoto and Y. Yamamoto. Analysis for the change of skin impedance. Med. Biol. Eng. Comput. 15:219–227 (1977).Google Scholar
- 4.T. Yamamoto and Y. Yamamoto. Dispersion and correlation of the parameters for skin impedance. Med. Biol. Eng. Comput. 16:592–594 (1978).Google Scholar
- 5.Y. Yamamoto, T. Yamamoto, S. Ohta, T. Uehara, S. Tahara, and Y. Ishizuka. The measurement principle for evaluating the performance of drugs and cosmetics by skin impedance. Med. Biol. Eng. Comput. 16:623–632 (1978).Google Scholar
- 6.S. Grimnes. Skin impedance and electro-osmosis in the human epidermis. Med. Biol. Eng. Comput. 21:739–749 (1983).Google Scholar
- 7.A. Boxtel. Skin resistance during square-wave electrical pulses of 1 to 10 mA. Med. Biol. Eng. Comput. 15:679–687 (1977).Google Scholar
- 8.J. Rosell, J. Colominas, P. Riu, R. Pallas-Areny, and J. G. Webster. Skin impedance from 1 Hz to 1 MHz. IEEE Trans. Biomed. Eng. 35:649–651 (1988).Google Scholar
- 9.J. D. DeNuzzio and B. Berner. Electrochemical and iontophoretic studies of human skin. J. Contr. Release 11:105–112 (1990).Google Scholar
- 10.R. R. Burnette and B. Ongpipattanakul. Characterization of the permselective properties of excised human skin during iontophoresis. J. Pharm. Sci. 76:765–773 (1987).Google Scholar
- 11.R. R. Burnette and B. Ongpipattanakul. Characterization of the pore transport properties and tissue alteration of excised human skin during iontophoresis. J. Pharm. Sci. 77:132–137 (1988).Google Scholar
- 12.M. J. Pikal. Transport mechanisms in iontophoresis. I. A theoretical model for the effect of electroosmotic flow on flux enhancement in transdermal iontophoresis. Pharm. Res. 7:118–126 (1990).Google Scholar
- 13.M. J. Pikal and S. Shah. Transport mechanisms in iontophoresis. II. Electroosmotic flow and transference number measurements for hairless mouse skin. Pharm. Res. 7:213–221 (1990).Google Scholar
- 14.M. J. Pikal and S. Shah. Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes. Pharm. Res. 7:222–229 (1990).Google Scholar
- 15.S. M. Sims. Iontophoretic Transport Mechanisms Across Skin, Dissertation thesis, University of Utah, Salt Lake City, 1991.Google Scholar
- 16.S. M. Sims, W. I. Higuchi, and V. Srinivasan. Skin alteration and convective solvent flow effects during iontophoresis. I. Neutral solute transport across human skin. Int. J. Pharm. 69:109–121 (1991).Google Scholar
- 17.A. K. Banga and Y. W. Chien. Iontophoretic delivery of drugs: Fundamentals, developments and biomedical applications. J. Contr. Release 7:1–24 (1988).Google Scholar
- 18.J. Hirvonen, J. H. Rytting, P. Paronen, and A. Urtti. Dodecyl N,N-dimethylamino acetate and Azone enhance drug penetration across human, snake, and rabbit skin. Pharm. Res. 8:933–937 (1991).Google Scholar
- 19.B. A. Boukamp. A nonlinear least square fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 20:31–44 (1986).Google Scholar
- 20.K. S. Cole. Membranes, Ions and Impulses, University of California Press, Berkeley, 1968.Google Scholar
- 21.J. R. MacDonald (ed.). Impedance Spectroscopy, John Wiley, New York, 1987.Google Scholar
- 22.T. Pajkossy. Electrochemistry at fractal surfaces. J. Electroanal. Chem. 300:1–11 (1991).CrossRefPubMedGoogle Scholar
- 23.R. F. Voss. In H. O. Peitgen and D. Saupe (eds.), The Science of Fractal Images, Springer-Verlag, New York, 1988, Chap. 4.Google Scholar
- 24.P. M. Elias. Epidermal barrier function: Intercellular lamellar lipid structures, origin, composition and metabolism. J. Contr. Release 15:199–208 (1991).Google Scholar
- 25.J. Hirvonen, R. Rajala, E. Laine, P. Paronen, and A. Urtti. Penetration enhancers dodecyl N,N-dimethylamino acetate and Azone alter the structure of the skin—A DSC study. In R. C. Scott, H. E. Bodde, R. H. Guy, and J. Hadgraft (eds.), Proceedings of the 2nd Conference of Prediction of Percutaneous Penetration, Southampton 2:350–354 (1991).Google Scholar
- 26.B. Dubuc, S. W. Zucker, C. Tricot, J. F. Quiniou, and D. Wehbi. Evaluating the fractal dimension of surfaces. Proc. R. Soc. London A425:113–127 (1989).Google Scholar
- 27.C. Moler, J. Little, and S. Bangert. PC-MATLAB for MS-DOS Personal Computers, The MathWorks Inc., 1987.Google Scholar
- 28.J. Hirvonen, K. Kontturi, L. Murtomäki, P. Paronen, and A. Urtti. Transdermal iontophoresis of sotalol and salicylate; the effect of skin charge and penetration enhancers. J. Contr. Release (submitted).Google Scholar
- 29.J.-P. Diard, B. Le Gorrec, and C. Montella. Calculation, simulation and interpretation of electrochemical impedances. J. Electroanal. Chem. 326:13–36 (1992).Google Scholar
Copyright information
© Plenum Publishing Corporation 1993