Advertisement

Pharmaceutical Research

, Volume 16, Issue 10, pp 1564–1569 | Cite as

Significant Transport of Doxorubicin into the Brain with Polysorbate 80-Coated Nanoparticles

  • Alexander E. Gulyaev
  • Svetlana E. Gelperina
  • Igor N. Skidan
  • Arkady S. Antropov
  • Gregory Ya. Kivman
  • Jörg Kreuter
Article

Abstract

Purpose. To investigate the possibility of delivering of anticancer drugs into the brain using colloidal carriers (nanoparticles).

Methods. Rats obtained 5 mg/kg of doxorubicin by i v. injection in form of 4 preparations : 1. a simple solution in saline, 2. a simple solution in polysorbate 80 1% in saline, 3. bound to poly (butyl cyanoacrylate) nanoparticles, and 4. bound to poly(butyl cyanoacrylate) nanoparticles overcoated with 1% polysorbate 80 (Tween® 80). After sacrifice of the animals after 10 min, 1, 2, 4, 6, and 8 hours, the doxorubicin concentrations in plasma, liver, spleen, lungs, kidneys, heart and brain were determined after extraction by HPLC.

Results. No significant difference in the body distribution was observed between the two solution formulations. The two nanoparticle formulations very significantly decreased the heart concentrations. High brain concentrations of doxorubicin (>6 μg/g) were achieved with the nanoparticles overcoated with polysorbate 80 between 2 and 4 hours. The brain concentrations observed with the other three preparations were always below the detection limit (< 0.1 |μg/g).

Conclusions. The present study demonstrates that the brain concentration of systemically administered doxorubicin can be enhanced over 60-fold by binding to biodegradable poly(butyl cyanoacrylate) nanoparticles, overcoated with the nonionic surfactant polysorbate 80. It is highly probable that coated particles reached the brain intact and released the drug after endocytosis by the brain blood vessel endothelial cells.

brain tumors brain targeting doxorubicin nanoparticles polysorbate 80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. H. Greig, Drug delivery to the brain by blood-brain barrier circumvention and drug modification, in: E. A. Neuwelt (ed.), Implications of the Blood-Brain Barrier and Its Manipulation, Plenum Press, New York, 1994, pp. 311–357Google Scholar
  2. 2.
    E. A. Neuwelt, P. A. Barnett, K. E. Hellstrom, L. Hellstrom, C. L. McCormick, and F. L. Ramsey. Effect of blood-brain barrier disruption on intact and fragmented monoclonal antibody localization in intracerebral lung carcinoma xenografts. J. Nucl. Med. 35:1831–1841 (1994).Google Scholar
  3. 3.
    E. Bigon, E. Boarato, A. Bruni, A. Leon, and G. Toffano. Pharmacological effects of phosphatidylserine liposomes: regulation of glycolysis and energy level in brain. Br. J. Pharmacol. 66:167–174 (1979).Google Scholar
  4. 4.
    M. Naoi and K. Yagi. Incorporation of enzyme through blood brain barrier into the brain by means of liposomes. Biochem. Int. 1:591–596 (1980).Google Scholar
  5. 5.
    F. Umezava and Y. Eto. Liposome targeting to mouse brain: Mannose as a recognition marker. Biochem. Biophys. Res. Commun. 153:1038–1044 (1988).Google Scholar
  6. 6.
    W. M. Pardridge. Recent developments in peptide drug delivery to the brain. Pharmacol. Toxicol. 71:3–10 (1992).Google Scholar
  7. 7.
    K. Kakinuma, R. Tanaka, H. Takahashi, M. Watanabe, T. Nakagawa, and M. Kuroki. Targeted chemotherapy for malignant brain tumor using thermosensitive liposome and localized hyperthermia. J. Neurosurg. 84:180–184 (1996).Google Scholar
  8. 8.
    J. Kreuter. Nanoparticles, in: J. Kreuter (ed.), Colloidal Drug Delivery Systems, M. Dekker, New York, 1994, pp. 219–342.Google Scholar
  9. 9.
    P. Couvreur, C. Dubernet, and F. Puisieux. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur. J. Pharm. Biopharm. 41:2–13(1995).Google Scholar
  10. 10.
    J. Kreuter. Evaluation of nanoparticles as drug delivery systems II: Comparison of the body distribution of microspheres (diameter >1 μm), liposomes, and emulsions. Pharm. Acta Helv. 58:217–226 (1983).Google Scholar
  11. 11.
    S. D. Tröster, U. Müller and J. Kreuter. Modification of the body distribution of poly (methylmethacrylate) nanoparticles in rats by coating with surfactants. Int. J.Pharm. 61:85–100 (1990).Google Scholar
  12. 12.
    R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating nano-spheres. Science 263:1600–1603 (1994).Google Scholar
  13. 13.
    R. H. Müller. Colloidal Carriers for Controlled Drug Delivery and Targeting. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1991.Google Scholar
  14. 14.
    G. Borchard, K. L. Audus, F. Shi, and J. Kreuter. Uptake of surfactant-coated poly(methylmethacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers. Int. J. Pharm. 110:29–35 (1994).Google Scholar
  15. 15.
    R. N. Alyautdin, D. Gothier, V. Petrov, D. Kharkevich, and J. Kreuter. Analgesic activity of the hexapeptide dalargin absorbed on the surface of polysorbate 80-coated poly(butylcyanocrylate) nanoparticles. Eur. J. Pharm. Biopharm. 41:44–48 (1995).Google Scholar
  16. 16.
    J. Kreuter, R. N. Alyautdin, D. A. Kharkevich, and A. A. Ivanov. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res. 674:171–174 (1995).Google Scholar
  17. 17.
    P. Couvreur, B. Kante, L. Grislain, M. Roland, and P. Speiser. Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles. J. Pharm. Sci. 71:790–792 (1982).Google Scholar
  18. 18.
    J. Kattan, J. P Droz, P. Couvreur, J. P. Marino, A. Boutan-Larose, P. Rougier, P. Brault, H. Vranckx, G. M. Grognet, X. Morge, and H. Sancho-Garnier. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest. New Drugs 10:191–199 (1994).Google Scholar
  19. 19.
    L. G. Alexandrova, A. M. Rubasheva, V. B. Zbarsky, E. L. Salamova, and M. G. Brazhnikova. Quantitative assay of doxorubicin by HPLC technique. Antibiot. Med. Biotechnol (Russia). 11:851–855 (1986).Google Scholar
  20. 20.
    Documenta Geigy, Wissenschaftliche Tabellen, J. R. Geigy A.G. Basel, 7. Aufl., 1968, pp. 174–175.Google Scholar
  21. 21.
    N. Chiannilkulchai, N. Ammoury, B. Caillou, J. P. Devissageut, and P. Couvreur. Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastases-bearing mice. Cancer Chemother. Pharmacol. 26:122–126 (1990).Google Scholar
  22. 22.
    P. Couvreur, L. Grislain, V. Lenaerts, F. Brasseur, P. Guiot, and A. Biernacki. Biodegradable polymeric nanoparticles as drug carrier for antitumor agents, in: P. Guiot and P. Couvreur (eds.), Polymeric Nanoparticles and Microsperes, CRC Press, Boca Raton 1986, pp. 27–93.Google Scholar
  23. 23.
    R. N. Alyautdin, V. E. Petrov, K. Langer, A. Berthold, D. A. Kharkevich, and J. Kreuter. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm. Res. 14:325–328 (1997).Google Scholar
  24. 24.
    R. N Alyautdin, E. B. Tezikov, P. Ramge, D. A. Kharkevich, D. J. Begley, and J. Kreuter. Significant entry of tubocurarin into the brain of rats by adsorption to polysorbate 80-coated polybutyl-cyanoacrylate nanoparticles: An in situ brain perfusion study. J. Microencapsul. 15:67–74 (1998).Google Scholar
  25. 25.
    J. Kreuter, V. E. Petrov, D. A. Kharkevich, and R. N. Alyautdin. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant-coated nanoparticles. J. Contr. Rel. 49:81–87 (1997).Google Scholar
  26. 26.
    W. M. Pardridge. Peptide Drug Delivery to the Brain, Raven Press, New York, 1991, pp. 52–53.Google Scholar
  27. 27.
    D. J. Begley. The interaction of some centrally active drugs with the blood brain barrier and circumventricular organs. Prog. Brain Res. 91:163–169 (1992).Google Scholar
  28. 28.
    C. Cordon-Cardo, J. P. O'Brien, D. Casals, L. Rittmann-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug resistance gene (P-glycoprotein) is expressed by endothelial cells at blood brain barrier sites. Proc. Natl. Acad. Sci. USA, 86:695–698 (1989).Google Scholar
  29. 29.
    D. M. Woodcock, M. E. Linsenmeyer, G. Chojnowski, A. B. Kriegler, V. Nink, L. K. Webster, and W. H. Sawyer, Reversal of multidrug resistance by surfactants. Br. J. Cancer 66:62–68 (1992).Google Scholar
  30. 30.
    M. M. Nerurkar, P. S. Burto, and R. T. Borchardt. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharm. Res. 13:528–534 (1996).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Alexander E. Gulyaev
    • 1
  • Svetlana E. Gelperina
    • 2
  • Igor N. Skidan
    • 1
  • Arkady S. Antropov
    • 1
  • Gregory Ya. Kivman
    • 3
  • Jörg Kreuter
    • 4
  1. 1.Karaganda Medical AcademyKaragandaKazakhstan
  2. 2.Center of Molecular Diagnostics and TherapyMoscow Institute of Medical EcologyMoscowRussia
  3. 3.Institute of BiotechnologyMoscowRussia
  4. 4.Institute of Pharmaceutical Technology, BiocenterJ. W. Goethe-UniversityFrankfurt/MainGermany

Personalised recommendations