Advertisement

The method of fundamental solutions for elliptic boundary value problems

  • Graeme Fairweather
  • Andreas Karageorghis
Article

Abstract

The aim of this paper is to describe the development of the method of fundamental solutions (MFS) and related methods over the last three decades. Several applications of MFS-type methods are presented. Techniques by which such methods are extended to certain classes of non-trivial problems and adapted for the solution of inhomogeneous problems are also outlined.

elliptic boundary value problems fundamental solutions nonlinear least squares boundary collocation 65N38 65N99 

References

  1. [1]
    M.A. Aleksidze, On approximate solutions of a certain mixed boundary value problem in the theory of harmonic functions, Differential Equations 2 (1966) 515-518.zbMATHGoogle Scholar
  2. [2]
    E. Almansi, Sull' integrazione dell' equazione differentiale Δ2n = 0, Annali di Mathematica Pura et Applicata, Series III, 2 (1897) 1-51.Google Scholar
  3. [3]
    K.E. Atkinson, The numerical evaluation of particular solutions for Poisson's equation, IMA J. Numer. Anal. 5 (1985) 319-338.zbMATHMathSciNetGoogle Scholar
  4. [4]
    P.K. Banerjee and R. Butterfield, Boundary Element Methods in Engineering Science(McGraw-Hill, Maidenhead, 1981).zbMATHGoogle Scholar
  5. [5]
    J.R. Berger and A. Karageorghis, The method of fundamental solutions for heat conduction in layered materials, preprint.Google Scholar
  6. [6]
    J.R. Berger, J. Skilowitz and V.K. Tewary, Green's function for steady-state heat conduction in a bimaterial composite solid, preprint.Google Scholar
  7. [7]
    A. Boag, Y. Leviatan and A. Boag, Analysis of acoustic scattering from fluid cylinders using a multifilament source model, J. Acoust. Soc. Amer. 83 (1988) 1-8.CrossRefGoogle Scholar
  8. [8]
    A. Boag, Y. Leviatan and A. Boag, Analysis of acoustic scattering from fluid bodies using a multipoint source model, IEEE Trans. Ultrason. Ferroelectrics and Frequency Control 36 (1989) 119-128.CrossRefGoogle Scholar
  9. [9]
    A. Bogomolny, Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer. Anal. 22 (1985) 644-669.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.F. Brady and G. Bossis, Stokesian dynamics, Ann. Rev. Fluid Mech. 20 (1988) 111-157.CrossRefGoogle Scholar
  11. [11]
    G. Burgess and E. Mahajerin, Rotational fluid flow using a least squares collocation technique, Comput. & Fluids 12 (1984) 311-317.zbMATHCrossRefGoogle Scholar
  12. [12]
    G. Burgess and E. Mahajerin, A comparison of the boundary element and superposition methods, Comput. & Structures 19 (1984) 697-705.zbMATHCrossRefGoogle Scholar
  13. [13]
    G. Burgess and E. Mahajerin, An analytical contour integration method for handling body forces in elasticity, Appl. Math. Modelling 9 (1985) 27-32.zbMATHCrossRefGoogle Scholar
  14. [14]
    G. Burgess and E. Mahajerin, The fundamental collocation method applied to the nonlinear Poisson equation in two dimensions, Comput. & Structures 27(1987) 763-767.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Y. Cao, W.W. Schultz and R.F. Beck, Three-dimensional desingularized boundary integral methods for potential problems, Internat. J. Numer. Methods Fluids 12 (1991) 785-803.zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    B.C. Carlson, A table of elliptic integrals of the third kind, Math. Comp. 51 (1988) 267-280.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    J.E. Caruthers, private communication.Google Scholar
  18. [18]
    J.E. Caruthers, J.C. French and G.K. Raviprakash, Green's function discretization for numerical solution of the Helmholtz equation, J. Sound Vibration 187 (1995) 553-568.MathSciNetCrossRefGoogle Scholar
  19. [19]
    J.E. Caruthers, J.C. French and G.K. Raviprakash, Recent developments concerning a new discretization method for the Helmholtz equation, in: Proceedings of the First CEAS/AIAA Aeroacoustics Conference, June 1995, Munich, Germany, Vol. II (1995) pp. 819-826.Google Scholar
  20. [20]
    C.Y. Chan and C.S. Chen, Method of fundamental solutions for multi-dimensional quenching problems, Proceedings of Dynamic Systems and Applications 2 (1996) 115-122.zbMATHMathSciNetGoogle Scholar
  21. [21]
    C.S. Chen, The method of fundamental solutions for nonlinear thermal explosion, Comm. Numer. Methods Engrg. 11 (1995) 675-681.zbMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    C.S. Chen, The method of fundamental solutions and the quasi-Monte Carlo method for Poisson's equation, in: Lecture Notes in Statistics106, eds. H. Niederreiter and P. Shuie (Springer, New York, 1995) pp. 158-167.Google Scholar
  23. [23]
    C.S. Chen and M.A. Golberg, A domain embedding method and quasi-Monte Carlo method for Poisson's equation, in: BEM 17, eds. C.A. Brebbia, S. Kim, T.A. Osswald and H. Power (Computational Mechanics Publications, Southampton, 1995) pp. 115-122.Google Scholar
  24. [24]
    C.S. Chen and M.A. Golberg, Las Vegas method for diffusion equations, in: Boundary Element Technology XII, eds. J.I. Frankel, C.A. Brebbia and M.A.H. Aliabadi (Computational Mechanics Publications, Southampton, 1997) pp. 299-308.Google Scholar
  25. [25]
    R.S. Cheng, Delta-trigonometric and spline-trigonometric methods using the simple-layer potential representation, Ph.D. thesis, Applied Mathematics Department, University of Maryland (1987).Google Scholar
  26. [26]
    S. Christiansen, On Kupradze's functional equations for plane harmonic problems, in: Function Theoretic Methods in Differential Equations, eds. R.P. Gilbert and R.J. Weinacht (Pitman, London, 1976) pp. 205-243.Google Scholar
  27. [27]
    D.L. Clements, Fundamental solutions for second order linear elliptic partial differential equations, in: Fundamental Solutions in Boundary Elements: Formulation and Integration, ed. F.G. Benitez (University of Sevilla, Sevilla, 1997) pp. 1-12.Google Scholar
  28. [28]
    T. D{ie91-01}broś, A singularity method for calculating hydrodynamic forces and particle velocities in low-Reynolds-number flows, J. Fluid. Mech. 156 (1986) 1-21.Google Scholar
  29. [29]
    G. De Mey, Integral equations for potential problems with the source function not located on the boundary, Comput. & Structures 8 (1978) 113-115.zbMATHCrossRefGoogle Scholar
  30. [30]
    G. Fairweather and R.L. Johnston, The method of fundamental solutions for problems in potential theory, in: Treatment of Integral Equations by Numerical Methods, eds. C.T.H. Baker and G.F. Miller (Academic Press, London, 1982) pp. 349-359.Google Scholar
  31. [31]
    G. Fairweather, F.J. Rizzo, D.J. Shippy and Y.S. Wu, On the numerical solution of two-dimensional potential problems by an improved boundary integral equation method, J. Comput. Phys. 31 (1979) 96-112.zbMATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    G. Fichera, Linear elliptic equations of higher order in two independent variables and singular integral equations with applications to anisotropic inhomogeneous elasticity, in: Partial Differential Equations and Continuum Mechanics, ed. R.E. Langer (University of Wisconsin Press, Madison, 1961) pp. 55-80.Google Scholar
  33. [33]
    R.T. Fenner, Source field superposition analysis of two-dimensional potential problems, Internat. J. Numer. Methods Engrg. 32 (1991) 1079-1091.zbMATHCrossRefGoogle Scholar
  34. [34]
    W. Freeden and H. Kersten, A constructive approximation theorem for the oblique derivative problem in potential theory, Math. Methods Appl. Sci. 3 (1981) 104-114.zbMATHMathSciNetGoogle Scholar
  35. [35]
    B.S. Garbow, K.E. Hillstrom and J.J. Moré, MINPACK Project, Argonne National Laboratory (1980).Google Scholar
  36. [36]
    M.A. Golberg, The method of fundamental solutions for Poisson's equation, Engrg. Anal. Boundary Elem. 16 (1995) 205-213.CrossRefGoogle Scholar
  37. [37]
    M.A. Golberg, Recent developments in the numerical evaluation of particular solutions in the boundary element method, Appl. Math. Comput. 75 (1996) 91-101.zbMATHMathSciNetCrossRefGoogle Scholar
  38. [38]
    M.A. Golberg and C.S. Chen, The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations, Boundary Elements Comm. 5 (1994) 57-61.Google Scholar
  39. [39]
    M.A. Golberg and C.S. Chen, On a method of Atkinson for evaluating domain integrals in the boundary element method, Appl. Math. Comput. 60 (1994) 125-138.zbMATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    M.A. Golberg, C.S. Chen and S.R. Karur, Improved multiquadratic approximation for partial differential equations, Engrg. Anal. Boundary Elem. 18 (1996) 9-17.CrossRefGoogle Scholar
  41. [41]
    G. Gospodinov and D. Ljutskanov, The boundary element method applied to plates, Appl. Math. Modelling 6 (1982) 237-244.zbMATHCrossRefGoogle Scholar
  42. [42]
    A.K. Gupta, The boundary integral equation method for potential problems involving axisymmetric geometry and arbitrary boundary conditions, M.S. thesis, Department of Engineering Mechanics, University of Kentucky (1979).Google Scholar
  43. [43]
    P.S. Han and M.D. Olson, An adaptive boundary element method, Internat. J. Numer. Methods Engrg. 24 (1987) 1187-1202.zbMATHCrossRefGoogle Scholar
  44. [44]
    P.S. Han, M.D. Olson and R.L. Johnston, A Galerkin boundary element formulation with moving singularities, Engrg. Comput. 1 (1984) 232-236.Google Scholar
  45. [45]
    U. Heise, Numerical properties of integral equations in which the given boundary values and the sought solutions are defined on different curves, Comput. & Structures 8 (1978) 199-205.zbMATHMathSciNetCrossRefGoogle Scholar
  46. [46]
    U. Heise, Application of the singularity method for the formulation of plane elastostatical boundary value problems as integral equations, Acta Mechanica 31 (1978) 33-69.zbMATHMathSciNetCrossRefGoogle Scholar
  47. [47]
    I. Herrera, Boundary Methods: An Algebraic Theory(Pitman, London, 1984).zbMATHGoogle Scholar
  48. [48]
    M.J. Hopper, ed., Harwell Subroutine Library Catalogue, Theoretical Physics Division, AERE, Harwell, UK (1973).Google Scholar
  49. [49]
    S. Ho-Tai, R.L. Johnston and R. Mathon, Software for solving boundary value problems for Laplace's equation using fundamental solutions, Technical Report 136/79, Department of Computer Science, University of Toronto (1979).Google Scholar
  50. [50]
    T. Inamuro, T. Saito and T. Adachi, A numerical analysis of unsteady separated flow by the discrete vortex method combined with the singularity method, Comput. & Structures 19 (1984) 75-84.zbMATHCrossRefGoogle Scholar
  51. [51]
    M.A. Jaswon and G.T. Symm, Integral Equation Methods in Potential Theory and Elastostatics(Academic Press, New York, 1977).zbMATHGoogle Scholar
  52. [52]
    D. Johnson, Plate bending by a boundary point method, Comput. & Structures 26 (1987) 673-680.zbMATHCrossRefGoogle Scholar
  53. [53]
    R.L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Appl. Math. Modelling 8 (1984) 265-270.zbMATHCrossRefGoogle Scholar
  54. [54]
    R.L. Johnston, G. Fairweather and P.S. Han, The method of fundamental solutions, an adaptive boundary element method, for problems in potential flow and solid mechanics, in: Proceedings of the 5th ASCE Specialty Conference(Engineering Mechanics Division, Laramie, WY, 1984) pp. 140-143.Google Scholar
  55. [55]
    R.L. Johnston, G. Fairweather and A. Karageorghis, An adaptive indirect boundary element methodt with applications, in: Boundary Elements VIII, Proceedings of the 8th International Conference, Tokyo, Japan, September 1986, Vol. II, eds. M. Tanaka and C. Brebbia (Springer, New York, 1987) pp. 587-598.Google Scholar
  56. [56]
    R.L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, Internat. J. Numer. Methods Engrg. 14 (1979) 1739-1760.CrossRefGoogle Scholar
  57. [57]
    A. Karageorghis, Modified methods of fundamental solutions for harmonic and biharmonic problems with boundary singularities, Numer. Methods Partial Differential Equations 8 (1992) 1-19.zbMATHMathSciNetCrossRefGoogle Scholar
  58. [58]
    A. Karageorghis, The method of fundamental solutions for the solution of steady-state free boundary problems, J. Comput. Phys. 98 (1992) 119-128.zbMATHCrossRefGoogle Scholar
  59. [59]
    A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys. 69 (1987) 434-459.zbMATHMathSciNetCrossRefGoogle Scholar
  60. [60]
    A. Karageorghis and G. Fairweather, The Almansi method of fundamental solutions for solving biharmonic problems, Internat. J. Numer. Methods Engrg. 26 (1988) 1668-1682.Google Scholar
  61. [61]
    A. Karageorghis and G. Fairweather, The simple layer potential method of fundamental solutions for certain biharmonic problems, Internat. J. Numer. Methods Fluids 9 (1989) 1221-1234.zbMATHMathSciNetCrossRefGoogle Scholar
  62. [62]
    A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA J. Numer. Anal. 9 (1989) 231-242.zbMATHMathSciNetGoogle Scholar
  63. [63]
    A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Technical Report 01/98, Department of Mathematics and Statistics, University of Cyprus (1998).Google Scholar
  64. [64]
    A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems, Technical Report 02/98, Department of Mathematics and Statistics, University of Cyprus (1998).Google Scholar
  65. [65]
    M. Katsurada, A mathematical study of the charge simulation method II, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 36 (1989) 135-162.zbMATHMathSciNetGoogle Scholar
  66. [66]
    M. Katsurada, Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 37 (1990) 635-657.zbMATHMathSciNetGoogle Scholar
  67. [67]
    M. Katsurada, Charge simulation method using exterior mapping functions, Japan J. Indust. Appl. Math. 11 (1994) 47-61.zbMATHMathSciNetCrossRefGoogle Scholar
  68. [68]
    M. Katsurada and H. Okamoto, A mathematical study of the charge simulation method I, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 35 (1988) 507-518.zbMATHMathSciNetGoogle Scholar
  69. [69]
    M. Katsurada and H. Okamoto, The collocation points of the fundamental solution method for the potential problem, Comput. Math. Appl. 31 (1996) 123-137.zbMATHMathSciNetCrossRefGoogle Scholar
  70. [70]
    M. Keshavarzi, A modified integral equation applied to problems of elastostatics, Comput. Methods Appl. Mech. Engrg. 16 (1978) 1-9.zbMATHCrossRefGoogle Scholar
  71. [71]
    S. Kim and S.J. Karrila, Microhydrodynamics: Principles and Selected Applications(Butterworth-Heinemann, Stoneham, 1991).Google Scholar
  72. [72]
    T. Kitagawa, On the numerical stability of the method of fundamental solution applied to the Dirichlet problem, Japan J. Appl. Math. 5 (1988) 123-133.zbMATHMathSciNetGoogle Scholar
  73. [73]
    T. Kitagawa, Asymptotic stability of the fundamental solution method, J. Comput. Appl. Math. 38 (1991) 263-269.zbMATHMathSciNetCrossRefGoogle Scholar
  74. [74]
    J.A. Kolodziej, Review of application of boundary collocation methods in mechanics of continuous media, Solid Mech. Arch. 12 (1987) 187-231.zbMATHGoogle Scholar
  75. [75]
    P.S. Kondapalli, Time-harmonic solutions in acoustics and elastodynamics by the method of fundamental solutions, Ph.D. thesis, Department of Engineering Mechanics, University of Kentucky (1991).Google Scholar
  76. [76]
    P.S. Kondapalli, D.J. Shippy and G. Fairweather, Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, J. Acoust. Soc. Amer. 91 (1992) 1844-1854.CrossRefGoogle Scholar
  77. [77]
    P.S. Kondapalli, D.J. Shippy and G. Fairweather, The method of fundamental solutions for transmission and scattering of elastic waves, Comput. Methods Appl. Mech. Engrg. 96 (1992) 255-269.zbMATHCrossRefGoogle Scholar
  78. [78]
    G.H. Koopman, L. Song and J.B. Fahnline, A method for computing acoustic fields based on the principle of wave superposition, J. Acoust. Soc. Amer. 86 (1989) 2433-2438.CrossRefGoogle Scholar
  79. [79]
    R. Kress and A. Mohsen, On the simulation source technique for exterior problems in acoustics, Math. Methods Appl. Sci. 8 (1986) 585-597.zbMATHMathSciNetGoogle Scholar
  80. [80]
    V.D. Kupradze, A method for the approximate solution of limiting problems in mathematical physics, Comput. Math. Math. Phys. 4 (1964) 199-205.zbMATHCrossRefGoogle Scholar
  81. [81]
    V.D. Kupradze, Potential Methods in the Theory of Elasticity(Israel Program for Scientific Translations, Jerusalem, 1965).zbMATHGoogle Scholar
  82. [82]
    V.D. Kupradze, On the approximate solution of problems in mathematical physics, Russian Math. Surveys 22 (1967) 58-108.MathSciNetCrossRefGoogle Scholar
  83. [83]
    V.D. Kupradze and M.A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, Comput. Math. Math. Phys. 4 (1964) 82-126.zbMATHMathSciNetCrossRefGoogle Scholar
  84. [84]
    D. Levin and A. Tal, A boundary collocation method for the solution of a flow problem in a complex three-dimensional porous medium, Internat. J. Numer. Methods Fluids 6 (1986) 611-622.zbMATHCrossRefGoogle Scholar
  85. [85]
    S.A. Lifits and S. Yu. Reutsky, The method of fundamental solutions and singular expansions for the numerical solution of the elliptic boundary-value problems with singularities, Prépublication 41, Institut de Mathématiques de Jussieu, Unité Mixte de Recherche 9994, Universités Paris VI et Paris VII/CNRS (October 1995).Google Scholar
  86. [86]
    M. MacDonell, A boundary method applied to the modified Helmholtz equation in three dimensions and its application to a waste disposal problem in the deep ocean, M.S. thesis, Department of Computer Science, University of Toronto (1985).Google Scholar
  87. [87]
    E. Mahajerin, An extension of the superposition method for plane anisotropic elastic bodies, Comput. & Structures 21 (1985) 953-958.zbMATHCrossRefGoogle Scholar
  88. [88]
    M. Maiti and S.K. Chakrabarty, Integral equations solutions for simply supported polygonal plates, Internat. J. Engrg. Sci. 12 (1974) 793-806.zbMATHCrossRefGoogle Scholar
  89. [89]
    R. Mathon and R.L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J. Numer. Anal. 14 (1977) 638-650.zbMATHMathSciNetCrossRefGoogle Scholar
  90. [90]
    S. Murashima and H. Kuahara, An approximate method to solve two-dimensional Laplace's equation by means of superposition of Green's functions on a Riemann surface, J. Inform. Process. 3 (1980) 127-139.zbMATHMathSciNetGoogle Scholar
  91. [91]
    S. Murashima and Y. Nonaka, Interactive Laplace's equation analyzing system ILAS, in: Boundary Elements VIII, Proceedings of the 8th International Conference, Tokyo, Japan, 1986, eds. M. Tanaka and C.A. Brebbia (Springer, Berlin, 1987) pp. 621-630.Google Scholar
  92. [92]
    S. Murashima, Y. Nonaka and H. Nieda, The charge simulation method and its applications to two-dimensional elasticity, in: Boundary Elements V, Proceedings of the 5th International Conference, Hiroshima, Japan, 1983, eds. C.A. Brebbia, T. Fugatami and M. Tanaka (Springer, Berlin, 1983) pp. 75-80.Google Scholar
  93. [93]
    Y. Niwa, S. Kobayashi and T. Fukui, An application of the integral equation method to plate-bending problems, Mem. Fac. Eng. Kyoto Univ. (Japan) 36 (1974) 140-158.Google Scholar
  94. [94]
    Numerical Algorithms Group Library, NAG(UK) Ltd, Oxford, UK.Google Scholar
  95. [95]
    E.R. Oliveira, Plane stress analysis by a general integral method, J. Engrg. Mech. Div. ASCE 94 (1968) 79-101.Google Scholar
  96. [96]
    Y.H. Pao and V. Varathatajulu, Huygens' principle, radiation conditions and integral formulae for the scattering of elastic waves, Department of Theoretical and Applied Mechanics, Cornell University (1975).Google Scholar
  97. [97]
    P.W. Partridge, C.A. Brebbia and L.C. Wrobel, The Dual Reciprocity Boundary Element Method(Computational Mechanics Publications, Southampton, 1992).zbMATHGoogle Scholar
  98. [98]
    C. Patterson and M.A. Sheikh, Regular boundary integral equations for stress analysis, in: Boundary Element Methods, Proceedings of the 3rd International Seminar on Boundary Element Methods, Irvine, CA, 1981, ed. C.A. Brebbia (Springer, New York, 1981) pp. 85-104.Google Scholar
  99. [99]
    C. Patterson and M.A. Sheikh, On the use of fundamental solutions in Trefftz method for potential and elasticity problems, in: Boundary Element Methods in Engineering, Proceedings of the Fourth International Seminar on Boundary Element Methods, Southampton, 1982, ed. C.A. Brebbia (Springer, New York, 1982) pp. 43-54.Google Scholar
  100. [100]
    A. Poullikkas, The method of fundamental solutions for the solution of elliptic boundary value problems, Ph.D. thesis, Department of Mechanical Engineering, Loughborough University (1998).Google Scholar
  101. [101]
    A. Poullikkas, A. Karageorghis and G. Georgiou, Methods of fundamental solutions for harmonic and biharmonic boundary value problems, Comput. Mech. 21 (1998) 416-423.zbMATHMathSciNetCrossRefGoogle Scholar
  102. [102]
    A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for Signorini problems, IMA J. Numer. Anal. 18 (1998) 273-285.zbMATHMathSciNetCrossRefGoogle Scholar
  103. [103]
    A. Poullikkas, A. Karageorghis, G. Georgiou and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numer. Methods Partial Differential Equations, to appear.Google Scholar
  104. [104]
    A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for inhomogeneous elliptic problems, Comput. Mech., to appear.Google Scholar
  105. [105]
    C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow(Cambridge University Press, Cambridge, 1992).zbMATHGoogle Scholar
  106. [106]
    J. Raamachandran and C. Rajamohan, Analysis of composite plates using charge simulation method, Engrg. Anal. Boundary Elem. 18 (1996) 131-135.CrossRefGoogle Scholar
  107. [107]
    D. Redekop, Fundamental solutions for the collocation method in planar elastostatics, Appl. Math. Modelling 6 (1982) 390-393.zbMATHCrossRefGoogle Scholar
  108. [108]
    D. Redekop and R.S.W. Cheung, Fundamental solutions for the collocation method in three-dimensional elastostatics, Comput. & Structures 26 (1987) 703-707.zbMATHCrossRefGoogle Scholar
  109. [109]
    D. Redekop and J.C. Thompson, Use of fundamental solutions in the collocation method in axisymmetric elastostatics, Comput. & Structures 17 (1983) 485-490.CrossRefGoogle Scholar
  110. [110]
    F.J. Rizzo and D.J. Shippy, A boundary integral approach to potential and elasticity problems for axisymmetric bodies with arbitrary boundary conditions, Mech. Res. Comm. 6 (1979) 99-103.zbMATHCrossRefGoogle Scholar
  111. [111]
    A.F. Seybert, B. Soenarko, F.J. Rizzo and D.J. Shippy, A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions, J. Acoust. Soc. Amer. 80 (1986) 1241-1247.CrossRefGoogle Scholar
  112. [112]
    D.J. Shippy, P.S. Kondapalli and G. Fairweather, Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, Math. Comput. Modelling 14 (1990) 74-79.zbMATHCrossRefGoogle Scholar
  113. [113]
    N. Simos and A.M. Sadegh, An indirect BIM for static analysis of spherical shells using auxiliary boundaries, Internat. J. Numer. Methods Engrg. 32 (1991) 313-325.zbMATHCrossRefGoogle Scholar
  114. [114]
    L. Song, G.H. Koopman and J.B. Fahnline, Numerical errors associated with the method of superposition for computing acoustic fields, J. Acoust. Soc. Amer. 89 (1991) 2625-2633.CrossRefGoogle Scholar
  115. [115]
    L. Song, G.H. Koopman and J.B. Fahnline, Active control of the acoustic radiation of a vibrating structure using a superposition formulation, J. Acoust. Soc. Amer. 89 (1991) 2786-2792.CrossRefGoogle Scholar
  116. [116]
    S.P. Walker, Diffusion problems using transient discrete source superposition, Internat. J. Numer. Methods Engrg. 35 (1992) 165-178.zbMATHCrossRefGoogle Scholar
  117. [117]
    J.L. Wearing and O. Bettahar, The analysis of plate bending problems using the regular direct boundary element method, Engrg. Anal. Boundary Elem. 16 (1995) 261-271.CrossRefGoogle Scholar
  118. [118]
    W.C. Webster, The flow about arbitrary, three-dimensional smooth bodies, J. Ship Res. 19 (1975) 206-218.Google Scholar
  119. [119]
    S. Weinbaum, P. Ganatos and Z.-Y. Yan, Numerical multipole and boundary integral equation techniques in Stokes flow, Ann. Rev. Fluid Mech. 22 (1990) 275-316.zbMATHMathSciNetCrossRefGoogle Scholar
  120. [120]
    T. Westphal, C.S. de Barcellos and J. Tomás Pereira, On general fundamental solutions of some linear elliptic differential operators, Engrg. Anal. Boundary Elem. 17 (1996) 279-285.CrossRefGoogle Scholar
  121. [121]
    B.C. Wu and N.J. Altiero, A boundary integral method applied to plates of arbitrary plan form and arbitrary boundary conditions, Comput. & Structures 10 (1979) 703-707.zbMATHMathSciNetCrossRefGoogle Scholar
  122. [122]
    H. Zhou and C. Pozrikidis, Adaptive singularity method for Stokes flow past particles, J. Comput. Phys. 117 (1995) 79-89.zbMATHCrossRefGoogle Scholar
  123. [123]
    C.S. Chen, M.A. Golberg and Y.C. Hon, Numerical justification of fundamental solutions and the quasi-Monte Carlo method for Poisson-type equations, Engrg. Anal. Boundary Elem., to appear.Google Scholar
  124. [124]
    C.S. Chen, M.A. Golberg and Y.C. Hon, Las Vegas method for diffusion equations, Internat. J. Numer. Methods Engrg., to appear.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Graeme Fairweather
    • 1
  • Andreas Karageorghis
    • 2
  1. 1.Department of Mathematical and Computer SciencesColorado School of MinesGoldenUSA
  2. 2.Department of Mathematics and StatisticsUniversity of CyprusNicosiaCyprus

Personalised recommendations