Advertisement

Pharmaceutical Research

, Volume 10, Issue 5, pp 743–749 | Cite as

Drug Absorption Limited by P-Glycoprotein-Mediated Secretory Drug Transport in Human Intestinal Epithelial Caco-2 Cell Layers

  • Janice Hunter
  • Barry H. Hirst
  • Nicholas L. Simmons
Article

Abstract

The hypothesis was tested that the operation of an ATP-dependent export pump localized at the apical (brush border) surface of the intestinal epithelium may limit substrate absorption kinetics. Human intestinal Caco-2 cell-layers display saturable secretion of vinblastine from basal to apical surfaces (Km, 18.99 ± 5.55 µM; Vmax, 1285.9 ± 281.2 pmol cm−2 hr−1) that is inhibited by verapamil, consistent with the expression of the ATP-dependent P-glycoprotein drug efflux pump at the apical brush border membrane. Inhibition of P-glycoprotein by a variety of modulators (verapamil, 1,9-dideoxyforskolin, nifedipine, and taxotere) is associated with an increased vinblastine absorptive permeability. Vinblastine absorption displayed a nonlinear dependence upon luminal (apical) vinblastine concentration, and vinblastine absorption increased markedly at concentrations where vinblastine secretory flux was saturated (>20 µM). Upon inhibition of P-glycoprotein by verapamil and 1,9-dideoxyforskolin, vinblastine absorption increased and was linearly dependent on vinblastine concentration. The limitation of P-glycoprotein substrate absorption by active ATP-dependent export via P-glycoprotein is discussed, together with the possibility that other classes of substrate may be substrates for different ATP-dependent export pumps.

absorption limitation Caco-2 cells P-glycoprotein multidrug resistance intestine oral drug delivery vinblastine verapamil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    I. Pastan and M. M. Gottesman. Multidrug resistance. Annu. Rev. Med. 42:277–286 (1991).Google Scholar
  2. 2.
    J. M. Ford and W. N. Hait. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42:155–199 (1990).Google Scholar
  3. 3.
    C. Cordon-Cardo, J. P. O'Brian, J. Boccia, J. R. Bertino, and M. R. Melamed. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumour tissues. J. Histochem. Cytochem. 38:1277–1287 (1990).Google Scholar
  4. 4.
    F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37:159–164 (1989).Google Scholar
  5. 5.
    M. B. Meyers, K. W. Scotto, and F. M. Sirotnak. P-glycoprotein content and mediation of vincristine efflux: Correlation with the level of differentiation in luminal epithelium of mouse small intestine. Cancer Comm. 3:159–165 (1991).Google Scholar
  6. 6.
    J. Hunter, B. H. Hirst, and N. L. Simmons. Epithelial secretion of vinblastine by human intestinal adenocarcinoma cell (HCT-8 and T84) layers expressing P-glycoprotein. Br. J. Cancer 64:437–444 (1991).Google Scholar
  7. 7.
    P. M. Dewick. Tumour inhibitors from plants. In W. C. Evans (ed.), Trease and Evans' Pharmacognosy, 13th ed., Balliesre Tindall, London, 1989, pp. 637–656.Google Scholar
  8. 8.
    W. R. Leib and W. D. Stein. Biological membranes behave as non-porous polymer sheets with respect to diffusion of nonelectrolytes. Nature 224:240–243 (1967).Google Scholar
  9. 9.
    P. A. Shore, B. B. Brodie, and C. A. M. Hogben. The gastric secretion of drugs: A pH partition hypothesis. J. Pharmacol. Exp. Ther. 119:361–369 (1957).Google Scholar
  10. 10.
    G. T. A. McEwan and M. L. Lucas. The effect of E.Coli STa enterotoxin on the absorption of weakly dissociable drugs from rat proximal jejunum in vivo. Br. J. Pharmacol. 101:937–943 (1990).Google Scholar
  11. 11.
    D. C. Taylor, J. Lynch, and D. E. Leahy. Models for intestinal permeability to drugs. In J. G. Hardy, S. S. Davis, and C. G. Wilson (eds.), Drug Delivery to the Gastrointestinal Tract, Ellis Horwood, Chichester, U.K., 1990 pp. 133–145.Google Scholar
  12. 12.
    M. Horio, K.-V. Chin, S. J. Currier, S. Goldenberg, C. Williams, I. Pastan, M. M. Gottesman, and J. Handler. Transepithelial transport of drugs by the multidrug transporter in cultured Madin-Darby kidney cell epithelia. J. Biol. Chem. 264:14880–14884 (1989).Google Scholar
  13. 13.
    J. Hunter, B. H. Hirst, and N. L. Simmons. Transepithelial vinblastine secretion mediated by P-glycoprotein is inhibited by forskolin derivatives. Biochem. Biophys. Res. Commun. 181:671–676 (1991).Google Scholar
  14. 14.
    A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).Google Scholar
  15. 15.
    I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterisation of the human colon carcinoma cell-line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).PubMedGoogle Scholar
  16. 16.
    P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Comm. 175:880–885 (1991).Google Scholar
  17. 17.
    M. Pinto, S. Robine-Leon, M. D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. LaCroix, P. Simon-Assman, K. Haffen, J. Fogh, and A. Zweibaum. Enterocyte-like differentiation and polarisation of the human colon carcinoma line Caco-2 in culture. Biol. Cell. 47:323–330 (1983).Google Scholar
  18. 18.
    I. Mohrmann, M. Mohrmann, J. Biber, and H. Murer. Sodium dependent transport of Pi by an established intestinal epithelial cell-line (Caco-2). Am. J. Physiol. 250:G323–G330 (1986).Google Scholar
  19. 19.
    K. I. Inui, M. Yamamoto, and H. Saito. Transepithelial transport of oral cephalosporins by monolayers of intestinal cell-line Caco-2: Specific transport systems in the apical and basolateral membranes. J. Pharmacol. Exp. Ther. 261:195–201 (1992).Google Scholar
  20. 20.
    M. Horio, E. Lovelace, I. Pastan, and M. M. Gottesman. Agents which reverse multidrug resistance are inhibitors of vinblastine transport by isolated vesicles. Biochem. Biophys. Acta 1061:106–110 (1991).Google Scholar
  21. 21.
    M. Naito and T. Tsuruo. Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res. 49:1452–1455 (1989).Google Scholar
  22. 22.
    J. Hunter, B. H. Hirst, and N. L. Simmons. Transepithelial transport of vinblastine by cultured canine renal epithelia (MDCK). J. Physiol. 446:28-29P (1991).Google Scholar
  23. 23.
    J. A. Plumb, R. Milroy, and S. B. Kaye. The activity of verapamil as a resistance modifier in vitro in drug resistant human tumour cell lines is not stereospecific. Biochem. Pharmacol. 39:787–792 (1990).Google Scholar
  24. 24.
    F. Gueritte-Voegelain, D. Guenard, F. Lavelle, M.-T. Le Goff, L. Mangatal, and P. Potier. Relationships between the structure of taxol analogues and their antimitotic activity. J. Med. Chem. 34:992–998 (1991).Google Scholar
  25. 25.
    E. K. Rowinsky, L. A. Cazenave, and R. C. Donehower. Taxol: A novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82:1247–1259 (1990).Google Scholar
  26. 26.
    W. H. M. Peters and H. M. J. Roelofs. Biochemical characterisation of resistance to mitoxantrone and adriamycin in Caco-2 human adenocarcinoma cells: A possible role for glutathione S-transferases. Cancer Res. 52:1886–1890 (1992).Google Scholar
  27. 27.
    K. Gerzon, S. Ochs, and G. C. Todd. Polarity of vincristine (VCR), vindesine (VDS), and vinblastine (VLB) in relation to neurological effects. Proc. AACR Abstr. 186:46 (1979).Google Scholar
  28. 28.
    D. C. Tosteson and J. F. Hoffman. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44:169–194 (1960).Google Scholar
  29. 29.
    R. C. Sharma, S. Inoue, J. Roitelman, R. T. Schimke, and R. D. Simon. Peptide transport by the multidrug resistance pump. J. Biol. Chem. 267:5731–5734 (1992).Google Scholar
  30. 30.
    S. C. Hyde, P. Emsley, M. Hartshorn, M. M. Mimmack, U. Gileadi, S. R. Pearce, M. P. Gallacher, R. Hubbard, and C. F. Higgins. Structural and functional relationships associated with cystic fibrosis, multi-drug resistance and bacterial transport. Nature 346:362–365 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Janice Hunter
    • 1
  • Barry H. Hirst
    • 1
  • Nicholas L. Simmons
    • 1
  1. 1.Gastrointestinal Drug Delivery Research Centre, Department of Physiological Sciences, Medical SchoolUniversity of Newcastle upon TyneEngland

Personalised recommendations