Advertisement

Pharmaceutical Research

, Volume 11, Issue 9, pp 1358–1361 | Cite as

Effect of Chitosan on the Permeability of Monolayers of Intestinal Epithelial Cells (Caco-2)

  • Per Artursson
  • Tuulikki Lindmark
  • Stanley S. Davis
  • Lisbeth Illum
Note
chitosan Caco-2 permeability nasal epithelium drug absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    C-M. Lehr, J.A. Bouwstra, E.H. Schacht and H.E. Junginger. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J.Pharm. 78:43–48 (1992).Google Scholar
  2. 2.
    L. Illum. Nasal delivery of peptides. Factors affecting nasal absorption. DJA Crommelin and K.K. Midha (Eds.) Topics in Pharmaceutical Sciences. Scientific Publishers Stuttgart, Stuttgart, pp 74–82 (1992)Google Scholar
  3. 3.
    L. Illum, N.F. Farraj and S.S. Davis. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. (in press).Google Scholar
  4. 4.
    M.N. Hart, L.F. VanDyk, S.A. Moore, D.M. Shasby and P.A. Cancilla. Differential opening of the brain endothelial barrier following neutralisation of the endothelial luminal anionic charge in vitro. J.Neuropathol. Exp. Neurol. 46: 141–153 (1987).Google Scholar
  5. 5.
    G. Wilson. Growth and characterisation of cell and tissue cultures for the study of drug transport. G. Wilson, S.S. Davis, L. Illum and A. Zweibaum (Eds) Pharmaceutical applications of cell and tissue culture to drug transport. Plenum Press, New York, pp. 15–25 (1991).Google Scholar
  6. 6.
    M. Pinto, S. Robine-Leon, M.D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. Lacroix, P. Assmann-Simon, K. Haffen, J. Fogh and A. Zweibaum. Enterocyte — like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47: 323–330 (1983).Google Scholar
  7. 7.
    E.K. Anderberg, C. Nystrom and P. Artursson. Epithelial transport of drugs in cell culture. VII. Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J.Pharm. Sci. 81: 879–887 (1992).Google Scholar
  8. 8.
    E. Bjork, U. Isaksson, P. Edman and P. Artursson. Starch microspheres induce pulsatile delivery of drugs and peptides across the epithelial barrier by reversible separation of the tight junction. J. Drug Targeting (in press).Google Scholar
  9. 9.
    J. Fogh, J.M. Fogh and T.J. Orfeo. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59: 221–226, (1977).Google Scholar
  10. 10.
    P. Artursson. Epithelial transport of drugs. I. A model for studying the transport of drugs (β-blocking agents) over an intestinal epithelial cell line (Caco-2). J.Pharm. Sci.. 79: 476–482 (1990).Google Scholar
  11. 11.
    P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175: 880–885 (1991).Google Scholar
  12. 12.
    P.M. Reardon, C.H. Gochoco, K.L. Audus, G. Wilson and P.L. Smith. In vitro nasal transport across ovine mucosa: Effects of ammonium glycyrrhizinate on electrical properties and permeability of growth hormone releasing peptide, mannitol and lucifer yellow. Pharm. Res. 10: 553–561 (1993).Google Scholar
  13. 13.
    E.K. Anderberg and P. Artursson. Epithelial transport of drugs in cell culture. VIII. The effects of the pharmaceutical surfactant excipient sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells. J. Pharm. Sci. 82: 392–398 (1993).Google Scholar
  14. 14.
    L.J. Filar and M.G. Wirick. Bulk and solutions properties of chitosan. R.A.A. Muzzarelli and E.R. Parisier (Eds.) Proceedings of the first international conference on chitin/chitosan, Massachusetts, pp 169–181 (1977).Google Scholar
  15. 15.
    A.B. Chan, C.N. Allen, N.L. Simmons, M.E. Parsons and B.H. Hirst. Resistance to acid of canine kidney (MDCK) and human colonic (T84) and ileo-caecal (HCT-8) adenocarcinoma epithelial cell monolayers in vitro. Quart. J. Exp. Physiol. 74: 553–556 (1989).Google Scholar
  16. 16.
    I. Meza, M. Sabanero, E. Stefani and M. Cereijido. Occluding junctions in MDCK cells: Modulation of transepithelial permeability by the cytoskeleton. J. Cell Biochem. 18: 407–421 (1982).Google Scholar
  17. 17.
    J.L. Madara. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am J. Physiol. 253: C171–C175 (1987).Google Scholar
  18. 18.
    E.K. Anderberg, T. Lindmark and P. Artursson. Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm. Res. 10: 857–864 (1993)Google Scholar
  19. 19.
    D.N. Granger, P.R. Kvietys, M.A. Perry and A.E. Taylor. Charge selectivity of rat intestinal capillaries. Gastroenterology. 91: 1443–1446 (1986).Google Scholar
  20. 20.
    S.M. Siegel and O. Daly. Regulation of betacyanin efflux from beet root by poly-1-lysine, Ca-ion and other substances. Plant Physiol. 41: 1429–1434 (1966).Google Scholar
  21. 21.
    J.L. Madara. Loosening tight junctions. J. Clin. Invest.. 83: 1089–1094 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Per Artursson
    • 1
  • Tuulikki Lindmark
    • 1
  • Stanley S. Davis
    • 2
    • 3
  • Lisbeth Illum
    • 2
    • 3
  1. 1.Department of Pharmaceutics, Biomedical CentreUppsala UniversitySweden
  2. 2.Department of Pharmaceutical SciencesNottingham UniversityNottinghamUK
  3. 3.DanBioSyst UK Ltd., Albert Einstein CentreNottinghamUK

Personalised recommendations